首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this paper, a non-local damping model including time and spatial hysteresis effects is used for the dynamic analysis of structures consisting of Euler–Bernoulli beams and Kirchoff plates. Unlike ordinary local damping models, the damping force in a non-local model is obtained as a weighted average of the velocity field over the spatial domain, determined by a kernel function based on distance measures. The resulting equation of motion for the beam or plate structures is an integro-partial-differential equation, rather than the partial-differential equation obtained for a local damping model. Approximate solutions for the complex eigenvalues and modes with non-local damping are obtained using the Galerkin method. Numerical examples demonstrate the efficiency of the proposed method for beam and plate structures with simple boundary conditions, for non-local and non-viscous damping models, and different kernel functions.  相似文献   

2.
A striking difference between the conventional local and nonlocal dynamical systems is that the later possess finite asymptotic frequencies. The asymptotic frequencies of four kinds of nonlocal viscoelastic damped structures are derived, including an Euler–Bernoulli beam with rotary inertia, a Timoshenko beam, a Kirchhoff plate with rotary inertia and a Mindlin plate. For these undamped and damped nonlocal beam and plate models, the analytical expressions for the asymptotic frequencies, also called the maximum or escape frequencies, are obtained. For the damped nonlocal beams or plates, the asymptotic critical damping factors are also obtained. These quantities are independent of the boundary conditions and hence simply supported boundary conditions are used. Taking a carbon nanotube as a numerical example and using the Euler–Bernoulli beam model, the natural frequencies of the carbon nanotubes with typical boundary conditions are computed and the asymptotic characteristics of natural frequencies are shown.  相似文献   

3.
Euler–Bernoulli beams under static loads in presence of discontinuities in the curvature and in the slope functions are the object of this study. Both types of discontinuities are modelled as singularities, superimposed to a uniform flexural stiffness, by making use of distributions such as unit step and Dirac's delta functions. A non-trivial generalisation to multiple different singularities of an integration procedure recently proposed by the authors for a single singularity is presented in this paper. The proposed integration procedure leads to closed form solutions, dependent on boundary conditions only, which do not require enforcement of continuity conditions along the beam span. It is however shown how, from the solution of the clamped-clamped beam, by considering suitable singularities at boundaries in the flexural stiffness model, responses concerning several boundary conditions can be recovered. Furthermore, solutions in terms of deflection of the beam are obtained for imposed displacements at boundaries providing the so called shape functions. The above mentioned shape functions can be adopted to insert beams with singularities as frame elements in a finite element discretisation of a frame structure. Explicit expressions of the element stiffness matrix are provided for beam elements with multiple singularities and the reduction of degrees of freedom with respect to classical finite element procedures is shown. Extension of the proposed procedure to beams with axial displacement and vertical deflection discontinuities is also presented.  相似文献   

4.
The main aim of this paper is to contribute to the construction of Green’s functions for initial boundary value problems for fourth order partial differential equations. In this paper, we consider a transversely vibrating homogeneous semi-infinite beam with classical boundary conditions such as pinned, sliding, clamped or with a non-classical boundary conditions such as dampers. This problem is of important interest in the context of the foundation of exact solutions for semi-infinite beams with boundary damping. The Green’s functions are explicitly given by using the method of Laplace transforms. The analytical results are validated by references and numerical methods. It is shown how the general solution for a semi-infinite beam equation with boundary damping can be constructed by the Green’s function method, and how damping properties can be obtained.  相似文献   

5.
A finite element model based on sinusoidal shear deformation theory is developed to study vibration and buckling analysis of composite beams with arbitrary lay-ups. This theory satisfies the zero traction boundary conditions on the top and bottom surfaces of beam without using shear correction factors. Besides, it has strong similarity with Euler–Bernoulli beam theory in some aspects such as governing equations, boundary conditions, and stress resultant expressions. By using Hamilton’s principle, governing equations of motion are derived. A displacement-based one-dimensional finite element model is developed to solve the problem. Numerical results for cross-ply and angle-ply composite beams are obtained as special cases and are compared with other solutions available in the literature. A variety of parametric studies are conducted to demonstrate the effect of fiber orientation and modulus ratio on the natural frequencies, critical buckling loads, and load-frequency curves as well as corresponding mode shapes of composite beams.  相似文献   

6.
In this study, a unified nonlinear dynamic buckling analysis for Euler–Bernoulli beam–columns subjected to constant loading rates is proposed with the incorporation of mercurial damping effects under thermal environment. Two generalized methods are developed which are competent to incorporate various beam geometries, material properties, boundary conditions, compression rates, and especially, the damping and thermal effects. The Galerkin–Force method is developed by implementing Galerkin method into force equilibrium equations. Then for solving differential equations, different buckled shape functions were introduced into force equilibrium equations in nonlinear dynamic buckling analysis. On the other hand, regarding the developed energy method, the governing partial differential equation for dynamic buckling of beams is also derived by meticulously implementing Hamilton’s principles into Lagrange’s equations. Consequently, the dynamic buckling analysis with damping effects under thermal environment can be adequately formulated as ordinary differential equations. The validity and accuracy of the results obtained by the two proposed methods are rigorously verified by the finite element method. Furthermore, comprehensive investigations on the structural dynamic buckling behavior in the presence of damping effects under thermal environment are conducted.  相似文献   

7.
In this paper, we present a non-local non-linear finite element formulation for the Timoshenko beam theory. The proposed formulation also takes into consideration the surface stress effects. Eringen׳s non-local differential model has been used to rewrite the non-local stress resultants in terms of non-local displacements. Geometric non-linearities are taken into account by using the Green–Lagrange strain tensor. A C0 beam element with three degrees of freedom has been developed. Numerical solutions are obtained by performing a non-linear analysis for bending and free vibration cases. Simply supported and clamped boundary conditions have been considered in the numerical examples. A parametric study has been performed to understand the effect of non-local parameter and surface stresses on deflection and vibration characteristics of the beam. The solutions are compared with the analytical solutions available in the literature. It has been shown that non-local effect does not exist in the nano-cantilever beam (Euler–Bernoulli beam) subjected to concentrated load at the end. However, there is a significant effect of non-local parameter on deflections for other load cases such as uniformly distributed load and sinusoidally distributed load (Cheng et al. (2015) [10]). In this work it has been shown that for a cantilever beam with concentrated load at free end, there is definitely a dependency on non-local parameter when Timoshenko beam theory is used. Also the effect of local and non-local boundary conditions has been demonstrated in this example. The example has also been worked out for other loading cases such as uniformly distributed force and sinusoidally varying force. The effect of the local or non-local boundary conditions on the end deflection in all these cases has also been brought out.  相似文献   

8.
Summary  The transverse vibrations of elastic homogeneous isotropic beams with general boundary conditions due to a moving random force with constant mean value are analyzed. The boundary conditions considered are: pinned–pinned, fixed–fixed, pinned–fixed, and fixed–free. Based on the Bernoulli beam theory, the problem is described by means of a partial differential equation. Closed-form solutions for the variance and the coefficient of variation of the beam deflection are obtained and compared for three types of force motion: accelerated, decelerated and uniform. The effects of beam damping and speed of the moving force on the dynamic response of beams are studied in detail. Received 3 December 2001; accepted for publication 30 April 2002  相似文献   

9.
This paper is concerned with an analytical study of the non-linear elastic in-plane behaviour and buckling of pinned–fixed shallow circular arches that are subjected to a central concentrated radial load. Because the boundary conditions provided by the pinned support and fixed support of a pinned–fixed arch are quite different from those of a pinned–pinned or a fixed–fixed arch, the non-linear behaviour of a pinned–fixed arch is more complicated than that of its pinned–pinned or fixed–fixed counterpart. Analytical solutions for the non-linear equilibrium path for shallow pinned–fixed circular arches are derived. The non-linear equilibrium path for a pinned–fixed arch may have one or three unstable equilibrium paths and may include two or four limit points. This is different from pinned–pinned and fixed–fixed arches that have only two limit points. The number of limit points in the non-linear equilibrium path of a pinned–fixed arch depends on the slenderness and the included angle of the arch. The switches in terms of an arch geometry parameter, which is introduced in the paper, are derived for distinguishing between arches with two limit points and those with four limit points and for distinguishing between a pinned–fixed arch and a beam curved in-elevation. It is also shown that a pinned–fixed arch under a central concentrated load can buckle in a limit point mode, but cannot buckle in a bifurcation mode. This contrasts with the buckling behaviour of pinned–pinned or fixed–fixed arches under a central concentrated load, which may buckle both in a bifurcation mode and in a limit point mode. An analytical solution for the limit point buckling load of shallow pinned–fixed circular arches is also derived. Comparisons with finite element results show that the analytical solutions can accurately predict the non-linear buckling and postbuckling behaviour of shallow pinned–fixed arches. Although the solutions are derived for shallow pinned–fixed arches, comparisons with the finite element results demonstrate that they can also provide reasonable predictions for the buckling load of deep pinned–fixed arches under a central concentrated load.  相似文献   

10.
The model where the cracks are represented by means of internal hinges endowed with rotational springs has been shown to enable simple and effective representation of transversely-cracked slender Euler–Bernoulli beams subjected to small deflections. It, namely, provides reliable results when compared to detailed 2D and 3D models even if the basic linear moment–rotation constitutive law is adopted.This paper extends the utilisation of this model as it presents the derivation of a closed-form stiffness matrix and a load vector for slender multi-stepped beams and beams with linearly-varying heights. The principle of virtual work allows for the simple inclusion of an arbitrary number of transverse cracks. The derived at matrix and vector define an ‘exact’ finite element for the utilised simplified computational model. The presented element can be implemented for analysing multi-cracked beams by using just one finite element per structural beam member. The presented expressions for a stepped-beam are not exclusively limited to this kind of height variation, as by proper discretisation an arbitrary variation of a cross-section’s height can be adequately modelled.The accurate displacement functions presented for both types of considered beams complete the derivations. All the presented expressions can be easily utilised for achieving computationally-efficient and truthful analyses.  相似文献   

11.
The refined power series solutions are presented for the coupled static analysis of thin-walled laminated beams resting on elastic foundation. For this purpose, the elastic strain energy considering the material and structural coupling effects and the energy including the foundation effects are constructed. The equilibrium equations and the force-displacement relationships are derived from the extended Hamilton's principle, and the explicit expressions for displacement parameters are presented based on power series expansions of displacement components. Finally, the member stiffness matrix is determined by using the force-displacement relationships. For comparison, the finite element model based on the Hermite cubic interpolation polynomial is presented. In order to verify the accuracy and the superiority of the laminated beam element developed by this study, the numerical solutions are presented and compared with results obtained from the regular finite beam elements and the ABAQUS's shell elements. The influences of the fiber angle change and the boundary conditions on the coupled behavior of laminated beams with mono-symmetric I-sections are investigated.  相似文献   

12.
This paper deals with the nonlinear vibration of a beam subjected to a tensile load and carrying multiple spring–mass–dashpot systems. The nonlinearity is attributable to mid-plane stretching, damping, and spring constant. Explicit expressions are presented for the frequency equations, mode shapes, nonlinear frequency, and modulation equations. The validity of the results is demonstrated via comparison with results in the literature. Parametric studies are conducted on beams with varying boundary conditions to investigate the effect of the location and magnitude of the spring–mass–dashpot system, as well as the role of the tension.  相似文献   

13.
This paper deals with the buckling behavior of two-layer shear-deformable beams with partial interaction. The Timoshenko kinematic hypotheses are considered for both layers and the shear connection (no uplift is permitted) is represented by a continuous relationship between the interface shear flow and the corresponding slip. A set of differential equations is obtained from a general 3D bifurcation analysis, using the above assumptions. Original closed-form analytical solutions of the buckling load and mode of the composite beam under axial compression are derived for various boundary conditions. The new expressions of the critical loads are shown to be consistent with the ones corresponding to the Euler–Bernoulli beam theory, when transverse shear stiffnesses go to infinity. The proposed analytical formulae are validated using 2D finite element computations. Parametric analyses are performed, especially including the limiting cases of perfect bond and no bond. The effect of shear flexibility is particularly emphasized.  相似文献   

14.
In this paper we look for a rotating beam, with pinned-free boundary conditions, whose eigenpair (frequency and mode-shape) is same as that of a uniform non-rotating beam for a particular mode. It is seen that for any given mode, there exists a flexural stiffness function (FSF) for which the ith mode eigenpair of a rotating beam with uniform mass distribution, is identical to that of a corresponding non-rotating beam with same length and mass distribution. Inserting these derived FSF’s in a finite element code for a rotating pinned-free beam, the frequencies and mode shapes of a non-rotating pinned-free beam are obtained. For the first mode, a physically realistic equivalent rotating beam is possible, but for higher modes, the FSF has internal singularities. Strategies for addressing these singularities in the FSF for finite element analysis are provided. The proposed functions can be used as test functions for rotating beam codes and also for targeted destiffening of rotating beams.  相似文献   

15.
为提高变截面梁振动分析的计算效率,提出了基于频域传递矩阵法的动力计算算法.首先,选择线速度、角速度、弯矩和剪力作为求解变量,通过Laplace变换将变截面梁的动力响应时域偏微分方程转换为频域常微分方程;然后,通过求解频域方程并结合协调和边界条件建立变截面梁的频域传递矩阵;通过构造傅里叶级数展开形式的时域响应函数,对变截面梁传递矩阵方法求解的频响函数进行Laplace逆变换,建立了变截面梁的固有特性计算和时域瞬态响应计算方法,最后,借助数值仿真软件,开发了变截面梁动力响应分析的计算程序.完成对算例的仿真计算和分析,并与有限元计算结果进行对比,数值结果验证了该方法的正确性和有效性.  相似文献   

16.
艾智勇  王禾  慕金晶 《力学学报》2021,53(5):1402-1411
饱和地基与梁共同作用问题的研究在力学领域及工程界都具有重要意义. 采用分数阶Merchant模型研究饱和地基的流变固结, 该模型比常用整数阶黏弹性模型更能精确反映地基的时变特征. 基于层状正交各向异性黏弹性饱和地基的固结解答, 采用有限元法与边界元法耦合的方法, 研究梁与分数阶黏弹性饱和地基的共同作用问题. 依据Timoshenko梁理论将梁离散为若干单元, 进而得到梁的总刚度矩阵方程; 将黏弹性地基固结问题的精细积分解答作为边界积分的核函数, 采用边界元法建立地基柔度矩阵方程; 结合梁与地基接触面的位移协调条件以及力的平衡条件, 通过有限元法与边界元法的耦合, 最终求得层状分数阶黏弹性饱和地基与Timoshenko梁共同作用的解答. 将本文地基退化为Kelvin地基进行计算, 并与已有文献中的算例进行对比, 二者具有很好的一致性. 在此基础上, 探讨分数阶次和地基成层性对梁与黏弹性饱和地基共同作用的影响. 结果表明: 分数阶次高的黏弹性饱和地基的固结速率明显更快; 对于层状地基, 加固表层土体能有效控制地基整体沉降, 并减小差异沉降. 实际工程中, 应充分考虑饱和地基流变及土体分层性的影响, 以准确分析梁与地基的共同作用过程.   相似文献   

17.
Accurate mechanical models of elastic beams undergoing large in-plane motions are discussed theoretically and experimentally. Employing the geometrically exact theory of rods with appropriate kinematic assumptions and asymptotic arguments, two approximate models are obtained—a relaxed model and its constrained version—that describe extensional and bending motions and neglect shear deformations. These models are shown to be suitable to predict, via an asymptotic approach, closed-form nonlinear motions of beams with general boundary conditions and, in particular, with boundary conditions that longitudinally constrain the motions. On the other hand, for axially unrestrained or weakly restrained beams, an inextensible and unshearable model is presented that describes bending motions only. The perturbations about the reference configuration up to third order are consistently derived for all beam models. Closed-form solutions of the responses to primary-resonance excitations are obtained via an asymptotic treatment of the governing equations of motion for two different beam configurations; namely, hinged–hinged (axially restrained) and simply supported (axially unrestrained) beams. In particular, considering the present theory and the existing theories, variations of the frequency–response curves with the beam slenderness or the relative boundary mass are investigated for the lowest modes. The fidelity of the proposed nonlinear models is ascertained comparing the theoretically obtained frequency–response curves of the first mode with those experimentally obtained.  相似文献   

18.
In this article, the closed form expressions for the transverse vibrations of a homogenous isotropic, thermally conducting, Kelvin–Voigt type viscothermoelastic thin beam, based on Euler– Bernoulli theory have been derived. The effects of relaxation times, thermomechanical coupling, surface conditions, and beam dimensions on energy dissipation induced by thermoelastic damping in MEMS (micro-electromechanical systems) resonators are investigated for beams under clamped and simply supported conditions. Analytical expressions for deflection, temperature change, frequency shifts, and thermoelastic damping in the beam have been derived. Some numerical results with the help of MATLAB programming software in case of Silicon Nitride have also been presented. The computer-simulated results in respect of damping factor and frequency shift have been presented graphically.  相似文献   

19.
Making use of a mixed variational formulation based on the Green function of the substrate, which assumes as independent fields the structure displacements and the contact pressure, a simple and efficient finite element-boundary integral equation coupling method is derived and applied to the stability analysis of beams and frames resting on an elastic half-plane. Slender Euler–Bernoulli beams with different combinations of end constraints are considered. The examples illustrate the convergence to the existing exact solutions and provide new estimates of the buckling loads for different boundary conditions. Finally, nonlinear incremental analyses of rectangular pipes with compressed columns and free or pinned foundation ends are performed, showing that pipes stiffer than the soil may exhibit snap-through instability.  相似文献   

20.
Soft materials and structures have recently attracted lots of research interests as they provide paramount potential applications in diverse fields including soft robotics, wearable devices, stretchable electronics and biomedical engineering. In a previous work, an Euler–Bernoulli finite strain beam model with thickness stretching effect was proposed for soft thin structures subject to stiff constraint in the width direction. By extending that model to account for the transverse shear effect, a Timoshenko-type finite strain beam model within the plane-strain context is developed in the present work. With some kinematic hypotheses, the finite deformation of the beam is analyzed, constitutive equations are deduced from the theory of finite elasticity, and by employing the standard variational method, the equilibrium equations and associated boundary conditions are derived. In the limit of infinitesimal strain, the new model degenerates to the classical extensible and shearable elastica model. The corresponding incremental equilibrium equations and associated boundary conditions are also obtained. Based on the new beam model, analytical solutions are given for simple deformation modes, including uniaxial tension, simple shear, pure bending, and buckling under an axial load. Furthermore, numerical solution procedures and results are presented for cantilevered beams and simply supported beams with immovable ends. The results are also compared with the previously developed finite strain Euler–Bernoulli beam model to demonstrate the significance of transverse shear effect for soft beams with a small length-to-thickness ratio. The developed beam model will contribute to the design and analysis of soft robots and soft devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号