首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using model acidic glycans, we demonstrate the benefits of permethylation for matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI/TOF-TOF) tandem mass spectrometry. With both the linear and branched structures, extensive cross-ring fragmentation product ions were generated, yielding valuable information on sugar linkages. Elimination of the negative charges commonly associated with sialylated structures through permethylation allowed their structural analysis in the positive ion mode. Extensive A- and X-type ions were observed for the linear structures, and slightly weaker signals for the branched sialylated structures. The diagnostic cross-ring fragments, permitting a distinction between alpha2-3 and alpha2-6 linkages of the sialic acid residues, were seen in abundance. Importantly, the cross-ring fragmentation with the branched structures provides adequate information to assign sialic acid residues, with a specific linkage, to a particular antenna.  相似文献   

2.
Carbohydrates of all classes consist of glycoform mixtures built on common core units. Determination of compositions and structures of such mixtures relies heavily on tandem mass spectrometric data. Analysis of native glycans is often necessary for samples available in very low quantities and for sulfated glycan classes. Negative tandem mass spectrometry (MS) provides useful product ion profiles for neutral oligosaccharides and is preferred for acidic classes. In previous work from this laboratory, site-specific influences of sialylation on product ion profiles in the negative mode were elucidated. The present results show how the interplay of two other acidic groups, uronic acids and sulfates, determines product ion patterns for chondroitin sulfate oligosaccharides. Unsulfated chondroitin oligosaccharides dissociate to form C-type ions almost exclusively. Chondroitin sulfate oligosaccharides produce abundant B- and Y-type ions from glycosidic bond cleavage with C- and Z-types in low abundances. These observations are explained in terms of competing proton transfer reactions that occur during the collisional heating process. Mechanisms for product ion formation are proposed based on tandem mass spectra and the abundances of product ions as a function of collision energy.  相似文献   

3.
Zhou W  Håkansson K 《Electrophoresis》2011,32(24):3526-3535
We explored the application of electron detachment dissociation (EDD) and infrared multiphoton dissociation (IRMPD) tandem mass spectrometry to fluorescently labeled sialylated oligosaccharides. Standard sialylated oligosaccharides and a sialylated N-linked glycan released from human transferrin were investigated. EDD yielded extensive glycosidic cleavages and cross-ring cleavages in all cases studied, consistently providing complementary structural information compared with infrared multiphoton dissociation. Neutral losses and satellite ions such as C-2H ions were also observed following EDD. In addition, we examined the influence of different fluorescent labels. The acidic label 2-aminobenzoic acid (2-AA) enhanced signal abundance in negative-ion mode. However, few cross-ring fragments were observed for 2-AA-labeled oligosaccharides. The neutral label 2-aminobenzamide (2-AB) resulted in more cross-ring cleavages compared with 2-AA-labeled species, but not as extensive fragmentation as for native oligosaccharides, likely resulting from altered negative charge locations from introduction of the fluorescent tag.  相似文献   

4.
Chloride anion attachment has previously been shown to aid determination of saccharide anomeric configuration and generation of linkage information in negative ion post-source decay MALDI tandem mass spectrometry. Here, we employ electron detachment dissociation (EDD) and collision activated dissociation (CAD) for the structural characterization of underivatized oligosaccharides bearing a chloride ion adduct. Both neutral and sialylated oligosaccharides are examined, including maltoheptaose, an asialo biantennary glycan (NA2), disialylacto-N-tetraose (DSLNT), and two LS tetrasaccharides (LSTa and LSTb). Gas-phase chloride-adducted species are generated by negative ion mode electrospray ionization. EDD and CAD spectra of chloride-adducted oligosaccharides are compared to the corresponding spectra for doubly deprotonated species not containing a chloride anion to assess the role of chloride adduction in the stimulation of alternative fragmentation pathways and altered charge locations allowing detection of additional product ions. In all cases, EDD of singly chloridated and singly deprotonated species resulted in an increase in observed cross-ring cleavages, which are essential to providing saccharide linkage information. Glycosidic cleavages also increased in EDD of chloride-adducted oligosaccharides to reveal complementary structural information compared to traditional (non-chloride-assisted) EDD and CAD. Results indicate that chloride adduction is of interest in alternative anion activation methods such as EDD for oligosaccharide structural characterization.  相似文献   

5.
Unambiguous differentiation between isobaric sulfated and phosphorylated tyrosine residues (sTyr and pTyr) of proteins by mass spectrometry is challenging, even using high resolution mass spectrometers. Here we show that upon negative ion mode collision-induced dissociation (CID), pTyr- and sTyr-containing peptides exhibit entirely different modification-specific fragmentation patterns leading to a rapid discrimination between the isobaric covalent modifications using the tandem mass spectral data. This study reveals that the ratio between the relative abundances of [M-H-80](-) and [M-H-98](-) fragment ions in ion-trap CID and higher energy collision dissociation (HCD) spectra of singly deprotonated +80 Da Tyr-peptides can be used as a reliable indication of the Tyr modification group nature. For multiply deprotonated +80 Da Tyr-peptides, CID spectra of sTyr- and pTyr-containing sequences can be readily distinguished based on the presence/absence of the [M-nH-79]((n-1)-) and [M-nH-79-NL]((n-1)-) (n=2, 3) fragment ions (NL=neutral loss).  相似文献   

6.
N-Linked glycans from bovine ribonuclease B, chicken ovalbumin, bovine fetuin, porcine thyroglobulin and human alpha(1)-acid glycoprotein were derivatized with 2-aminobenzoic acid by reductive amination and their tandem mass spectra were recorded by negative ion electrospray ionization with a quadrupole time-of-flight mass spectrometer. Derivatives were also prepared from 2-amino-5-methyl- and 2-amino-4,5-dimethoxybenzoic acid in order to confirm the identity of fragment ions containing the reducing terminus. Major fragments from the [M - H](-) ions from the neutral glycans retained the derivative (Y-type cleavages) and provided information on sequence and branching. Other major fragments were products of A-type cross-ring cleavages giving information on antenna structure. Singly doubly and triply charged ions were formed from sialylated glycans. They produced major fragments by loss of sialic acid and a series of singly charged ions that were similar to those from the neutral analogues. Doubly charge ions were also produced by the neutral glycans and were fragmented to form product ions with one and two charges. Again, the fragment ions with a single charge were similar to those from the singly charged parents, but branching information was less obvious because of the occurrence of more abundant ions produced by multiple cleavages. Detection limits were around 200 fmol (3 : 1 signal-to-noise ratio).  相似文献   

7.
N-linked oligosaccharides were released from hen ovalbumin by PNGase F and derivatized with phenylhydrazine. They were then examined by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Phenylhydrazones of N-glycans under MALDI-tandem mass spectrometry (MS/MS) and post-source decay (PSD) conditions produced relatively similar fragmentation patterns; however, more cross-ring cleavages and fragment ions corresponding to low abundance isomeric structures were detected by MS/MS and not in PSD. Most fragment ions corresponded to glycosidic cleavages with preferential loss of residues from the chitobiose core and the 3-antenna. Sialylated phenylhydrazone-N-glycans, characterized here for the first time in ovalbumin by tandem mass spectrometry, underwent losses of sialic acid residues followed the same fragmentation pathways observed with neutral derivatized glycans. The relative abundances of some fragment ions indicated the linkage position of sialic acid and provided information on the number of residues attached to the 6-antenna. Also, new structures of ovalbumin glycans were observed as part of this study and are reported here.  相似文献   

8.
Doubly charged sodiated and permethylated linear malto-oligosaccharides ({Glc}6-{Glc}9), branched N-linked glycans (high-mannose type GlcNAc2Man5-9, and complex asialo- and disialylated-biantennary glycans) were analyzed by tandem mass spectrometry using collisionally-activated dissociation (CAD) and "hot" electron capture dissociation (ECD) available in a custom-built ESI FTICR mass spectrometer. For linear permethylated malto-oligosaccharides, both CAD and "hot" ECD produced glycosidic cleavages (B, Y, C, and Z ions), cross-ring cleavages (A- and X-type), and internal cleavages (B/Y and C/Y type) to provide sequence and linkage information. For the branched N-linked glycans, CAD and "hot" ECD provided complementary structural information. CAD generated abundant B and Y fragment ions by glycosidic cleavages, whereas "hot" ECD produced dominant C and Z ions. A-type cross-ring cleavages were present in CAD spectra. Complementary A- and X-type cross-ring fragmentation pairs were generated by "hot" ECD, and these delineated the branching patterns and linkage positions. For example, 0, 4An and 3, 5An ions defined the linkage position of the major branch as the 6-position of the central core mannose residue. The internal fragments observed in CAD were more numerous and abundant than in "hot" ECD spectra. Since the triply charged (sodiated) molecular ion of the permethylated disialylated-biantennary N-linked glycan has relatively high abundance, it was isolated and fragmented in a "hot" ECD experiment and extensive fragment ions (glycosidic and complementary pairs of cross-ring cleavages) were generated to fully confirm the sequence, branching, and linkage assignments for this glycan.  相似文献   

9.
Nano-electrospray ionization quadrupole time-of-flight mass spectrometry (nanoESI-Q-TOFMS) was used for sensitive mapping and sequencing of underivatized oligosaccharide alditols obtained from human mucins. Using subnanomolar amounts of oligosaccharides previously analyzed by nuclear magnetic resonance (NMR), series of diagnostic ions relevant to the structural characterization of O-glycans were deduced. Determination of the core type as well as positions and partial linkages of fucose residues could be readily obtained from the dominant [M+Na](+) ions. Differentiation of isomeric structures and glycosidic linkages were defined by the characteristic cross-ring (0,2)A-type cleavages in the negative ion mode. Tandem (MS/MS) mass spectra of [M-H](-) ions from sialylated or sulfated O-glycans revealed information concerning the position and linkage of such residues. These fragmentation rules were further applied in the structural determination of glycans from human colonic mucins. All these findings indicated the efficiency of ESI-Q-TOFMS for the determination of oligosaccharide composition, sequence, partial linkage and substitution, providing a wealth of structural information with sensitivity sufficient for the analysis of quantities as obtained from natural sources.  相似文献   

10.
Structure analyses of underivatized neutral lacto oligosaccharides are systematically performed by ultraviolet matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (UV-MALDI TOF MS) and UV-MALDI ion-trap time-of-flight mass spectrometry (ion-trap/TOF MS) acquired in negative-ion mode. Interestingly, their fragmentation significantly differ each other. In postsource decay (PSD) in UV-MALDI TOF MS, cross-ring cleavage at the reducing terminal predominates. On the other hand, glycosyl bond cleavage (C-type fragmentation) takes place preferentially in collision induced dissociation (CID) in UV-MALDI ion-trap/TOF MS. The cross-ring cleavage in PSD similar to that in in-source decay occurs via a prompt reaction path characteristic of the UV-MALDI process itself. The product ion spectra of UV-MALDI ion-trap/TOF MS are similar to the electrospray ionization (ESI) ion-trap or quadrupole/TOF CID product ion spectra. During ion-trap/TOF MS experiments, the deprotonated molecular ions survive for several tens of milliseconds after CID event because the high internal energy chlorinated precursor ions are cooled by collisional cooling in the ion trap. The results obtained suggest that the PSD from the chlorinated precursor ion in UV-MALDI TOF MS might proceed as a two-step reaction; in the first, a high internal energy deprotonated molecular ion is generated as a reaction intermediate during the flight in the drift tube, and in the second, the rapid decomposition from the deprotonated molecular ion takes place.  相似文献   

11.
Various feruloylated arabinose- and galactose-containing mono- and disaccharides with known linkage configurations (2-O-(trans-feruloyl)-L-arabinopyranose, 5-O-(trans-feruloyl)-L-arabinofuranose, O-[2-O-(trans-feruloyl)-alpha-L-arabinofuranosyl]-(1-->5)-L-arabinofuranose, and O-[6-O-(trans-feruloyl)-beta-D-galactopyranosyl]-(1-->4)-D-galactopyranose) were analyzed by electrospray ionization mass spectrometry using an ion trap or a quadrupole time-of-flight (Q-TOF) mass analyzer. Collision-induced dissociation (CID) experiments using the two mass analyzers generated similar tandem mass spectrometric (MS/MS) fragmentation patterns. However, the ester-bond cleavage ions were more abundant using the Q-TOF mass analyzer. Compared with the positive ion mode, the negative ion mode produces simpler and more useful CID product-ion patterns. For arabinose-containing feruloylated compounds, results obtained with both analyzers show that it is possible to assign the location of the feruloyl group to the O-2 or O-5 of arabinosyl residues. In the characterization of the 2-O-feruloyl and 5-O-feruloyl linkages, the relative abundance of the cross-ring fragment ions at m/z 265 (-60 u or -62 u after 18O-labelling) and at m/z 217 (-108 u or -110 u after 18O-labelling) play a relevant role. For galactose-containing feruloylated compounds, losses of 60, 90 and 120 Da observed in MS3 experiment correspond to the production of 0,2A1, 0,3A1 and (0,2A1-60 Da) cross-ring cleavage ions, respectively, fixing the location of feruloyl group at the O-6 of the galactose residue.  相似文献   

12.
Positive- and negative-ion MSn spectra of chicken egg yolk glycopeptides binding a neutral and a sialylated N-glycan were acquired by using electrospray ionization linear ion trap time-of-flight mass spectrometry (ESI-LIT-TOFMS) and collision-induced dissociation (CID) with helium as collision gas. Several characteristic differences were observed between the positive- and negative-ion CID MSn (n = 2, 3) spectra. In the positive-ion MS2 spectra, the peptide moiety was presumably stable, but the neutral N-glycan moiety caused several B-type fragmentations and the sialylated N-glycan almost lost sialic acid(s). In contrast, in the negative-ion MS2 spectra, the peptide moiety caused several side-chain and N-glycan residue (e.g., N-acetylglucosamine (GlcNAc) residue) fragmentations in addition to backbone cleavages, but the N-glycan moieties were relatively stable. The positive-ion MS3 spectra derived from the protonated peptide ion containing a GlcNAc residue (203.1 Da) provided enough information to determine the peptide amino-acid sequence including the glycosylation site, while the negative-ion MS3 spectra derived from the deprotonated peptide containing a 0,2X1-type cross-ring cleavage (83.1 Da) complicated the peptide sequence analysis due to side-chain and 0,2X1 residue related fragmentations. However, for the structural information of the N-glycan moiety of the glycopeptides, the negative-ion CID MS3 spectra derived from the deprotonated 2,4A6-type cross-ring cleavage ion (neutral N-glycan) or the doubly deprotonated B6-type fragment ion (sialylated N-glycan) are more informative than are those of the corresponding positive-ion CID MS3 spectra. Thus, the positive-ion mode of CID is useful for the analyses of peptide amino-acid sequences including the glycosylation site. The negative-ion mode of CID is especially useful for sialylated N-glycan structural analysis. Therefore, in the structural analysis of N-glycopeptides, their roles are complementary.  相似文献   

13.
Negative ion spectra of N-linked glycans were produced by electrospray from a dilute solution of the glycans and various salts in methanol:water using a Waters-Micromass Q-TOF Ultima Global tandem quadrupole/time-of-flight (Q-TOF) mass spectrometer. Stable anionic adducts were formed with chloride, bromide, iodide, nitrate, sulphate, and phosphate. Unstable adducts that fragmented by a cross-ring cleavage of the reducing N-acetylglucosamine (GlcNAc) residue, were formed with fluoride, nitride, sulphide, carbonate, bicarbonate, hydroxide, and acetate. Nitrate adducts prepared from ammonium nitrate produced the most satisfactory spectra as they were relatively free from in-source fragmentation products and gave signals that were about ten times as strong as those from corresponding [M - H]- ions prepared from solutions containing ammonium hydroxide. Detection limits were in the region of 20 fmol. Neutral glycans gave both singly- and doubly-charged ions with the larger glycans preferring the formation of doubly-charged ions. Acidic glycans with several acidic groups gave ions in higher charge states as the result of ionization of the anionic groups. Low energy collision-induced decomposition (CID) spectra of the singly-charged ions were dominated by cross-ring and C-type fragments, unlike the corresponding spectra of the positive ions that contained mainly B- and Y-type glycosidic fragments. Formation of these ions could be rationalized by proton abstraction from various hydroxy groups by an initially-formed anionic adduct. Prominent glycosidic and cross-ring cleavage ions defined structural features such as the specific composition of each of the two antennae, presence of a bisecting GlcNAc residue and location of fucose residues, details that were difficult to determine by conventional techniques. Acidic glycans fragmented differently on account of charge localization on the acid functions rather than the hydroxy groups.  相似文献   

14.
A series of synthetic mono- and diphosphorylated peptides has been analyzed by positive and negative mode electrospray ionization-tandem mass spectrometry. The synthetic peptides are serine- and threonine-phosphorylated analogs of proteolytic fragments from the C-terminal region of rhodopsin. Use of positive and negative modes of electrospray ionization to produce ions for tandem mass spectrometry via low energy collision-induced dissociation was explored. For some of the peptides, the complementary use of experimental results allowed determination of the phosphorylation sites when either mode alone gave incomplete information. Other peptides, however, gave negative ion spectra not interpretable in terms of backbone cleavages. However, use of positive ion tandem mass spectrometry of different charge state precursor ions gave sufficient information in most cases to assign sites of phosphorylation. These results illustrate the utility of obtaining complementary information by tandem mass spectrometry by using precursor ions of different charge polarity or number.  相似文献   

15.
The underivatized saponins from Tribulus terrestris and Panax ginseng have been investigated by electrospray ionization multi-stage tandem mass spectrometry (ESI-MS(n)). In ESI-MS spectra, a predominant [M + Na](+) ion in positive mode and [M - H](-) ion in negative mode were observed for molecular mass information. Multi-stage tandem mass spectrometry of the molecular ions was used for detailed structural analysis. Fragment ions from glycoside cleavage can provide information on the mass of aglycone and the primary sequence and branching of oligosaccharide chains in terms of classes of monosaccharides. Fragment ions from cross-ring cleavages of sugar residues can give some information about the linkages between sugar residues. It was found that different alkali metal-cationized adducts with saponins have different degrees of fragmentation, which may originate from the different affinity of a saponin with each alkali metal in the gas phase. ESI-MS(n) has been proven to be an effective tool for rapid determination of native saponins in extract mixtures, thus avoiding tedious derivatization and separation steps.  相似文献   

16.
刺五加寡糖的电喷雾多级串联质谱研究   总被引:2,自引:0,他引:2  
采用小柱层析法从刺五加中分离得到刺五加寡糖类系列化合物(刺五加二糖刺五加六糖).实验结果表明,在正离子模式下的ESI-MS谱中,此类化合物呈现出特征的加合离子峰簇[M+Na]+/[M+K]+或[M+H2O+Na]+/[M+H2O+K]+,可以确定其分子量;在负离子模式下的ESI-MS谱中,刺五加寡糖易形成[M-H]-/[M+nH2O-H]-(n<3).还利用电喷雾多级串联质谱(ESI-MSn)对刺五加三糖进行了系统的研究,推断出刺五加三糖的组成与结构.  相似文献   

17.
Here we describe a technique to obtain all the N-linked oligosaccharide structures from a single reversed-phase (RP) HPLC run using on-line tandem MS in both positive and negative ion modes with polarity switching. Oligosaccharides labeled with 2-aminobenzamide (2AB) were used because they generated good ionization efficiency in both ion polarities. In the positive ion mode, protonated oligosaccharide ions lose sugar residues sequentially from the nonreducing end with each round of MS fragmentation, revealing the oligosaccharide sequence from greatly simplified tandem MS spectra. In the negative ion mode, diagnostic ions, including those from cross-ring cleavages, are readily observed in the MS2 spectra of deprotonated oligosaccharide ions, providing detailed structural information, such as branch composition and linkage positions. Both positive and negative ion modes can be programmed into the same LC/MS experiment through polarity switching of the MS instrument. The gas-phase oligosaccharide nonreducing end (GONE) sequencing data, in combination with the diagnostic ions generated in negative ion tandem MS, allow both sequence and structural information to be obtained for all eluting species during a single RP-HPLC chromatographic run. This technique generates oligosaccharide analyses at high speed and sensitivity, and reveals structural features that can be difficult to obtain by traditional methods.  相似文献   

18.
The electrospray mass spectra and collision-induced fragmentation of neutral N-linked glycans obtained from glycoproteins were examined with a Q-TOF mass spectrometer. The glycans were ionized most effectively as adducts of alkali metals, with lithium providing the most abundant signal and caesium the least. Singly charged ions generally gave higher ion currents than doubly charged ions. Addition of formic acid could be used to produce [M + H]+ ions, but these ions were always accompanied by abundant cone-voltage fragments. The energy required for collision-induced fragmentation was found to increase in a linear manner as a function of mass with the [M + Na]+ ions requiring about four times as much energy as the [M + H]+ ions for complete fragmentation of the molecular ions. Fragmentation of the [M + H]+ ions gave predominantly B- and Y-type glycosidic fragments whereas the [M + Na]+ and [M + Li]+ ions produced a number of additional fragments including those derived from cross-ring cleavages. Little fragmentation was observed from the [M + K]+ and [M + Rb]+ ions and the only fragment to be observed from the [M + Cs]+ ion was Cs+. The [M + Na]+ and [M + Li]+ ions from all the N-linked glycans gave abundant fragments resulting from loss of the terminal GlcNAc moiety and prominent, though weaker, ions as the result of 0,2A and 2,4A cross-ring cleavages of this residue. Most other ions were the result of successive additional losses of residues from the non-reducing terminus. This pattern was particularly prominent with glycans containing several non-reducing GlcNAc residues where successive losses of 203 u were observed. Many of the ions in the low-mass range were products of several different fragmentation routes but still provided structural information. Possibly of most diagnostic importance was an ion formed by loss of 221 u (GlcNAc molecule) from an ion that had lost the 3-antenna and the chitobiose core. This latter ion, although coincident in mass with some other 'internal' fragments, often provided additional information on the composition of the antennae. Other ions defining antenna composition were weak cross-ring fragments produced from the core branching mannose residue. Glycans containing Gal-GlcNAc residues showed successive losses of this moiety, particularly from the B-type fragments resulting from loss of the reducing-terminal GlcNAc residue. The [M + Na]+ and [M + Li]+ ions from high-mannose and hybrid glycans gave a series of ions of composition (Man)nNa/Li+ where n = 1 to the total number of glycans in the molecule, allowing these sugars to be distinguished from the more highly processed complex glycans. Other ions in the spectra of the high-mannose glycans were diagnostic of chain branching but insufficient information was available to determine their mode of formation.  相似文献   

19.
Fixed-energy sequential tandem mass spectrometry (MS(n)) capabilities offered by quadrupole ion trap instruments have been explored in a systematic study of six isomers of Gal-Fucalpha-OBenzyl disaccharides. Under collision-induced dissociation (CID), sodiated molecular species generated in the positive-ion electrospray ionization mode yield simple and predictable mass spectra. Information on interglycosidic linkages and configurations can be deduced from the relative intensities of the selected diagnostic fragments arising from the glycosidic bond cleavages and corroborated by the fragments arising from cross-ring cleavages. As the CID patterns are not dependent on the number of prior tandem mass spectrometric steps, structures can be unambiguously assigned by matching the spectra with a library. The rules governing the fragmentation behavior of this class of oligosaccharides were tested for a representative isomeric disaccharide, Glcbeta1,3Fucalpha-OAllyl. The findings establish a basis for using MS(n) with a quadrupole ion trap instrument to elucidate structures of hexose-fucose subunits from more complicated oligosaccharides. Energy-resolved mass spectra were also acquired by CID tandem triple-quadrupole mass spectrometry. The breakdown behavior of the molecular ions revealed patterns which could differentiate stereoisomers of Gal-Fuc disaccharides over a range of collision energy from 20 to 50 eV.  相似文献   

20.
An ion source incorporating a fibre optic interface has been constructed for atmospheric pressure matrix-assisted laser desorption/ionisation quadrupole ion trap mass spectrometry. The configuration has been applied to the study of linear and complex oligosaccharides. Multi-stage tandem mass spectrometry (MSn, n = 2-4) experiments carried out in the ion trap enable extended fragmentation pathways to be investigated that yield structural information. Collisional activation of sodiated oligosaccharides, as demonstrated on the model compound maltoheptaose, produces primarily B and Y fragments resulting from cleavage of glycosidic bonds; fragments from cross-ring cleavages are also observed following further stages of tandem mass spectrometry, providing additional linkage information. The analyses of mixtures of complex oligosaccharides are demonstrated for N-linked glycans from chicken egg glycoproteins and a ribonuclease glycan mixture. Mass spectrometric and tandem mass spectrometric data for sugars with molecular weights up to 4000 Da is shown for mixtures of linear dextrans and N-linked glycans. The use of MSn (n = 3, 4) on these complex molecules enabled structural information to be elucidated that confirms data observed in the MS/MS spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号