首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reductive amination reaction using 7-amino-4-methylcoumarin (AMC) as a fluorescent probe enabled analyses of glycoproteins' monosaccharides and N-linked oligosaccharides. Reductive amination of N-acetylhexosamines and AMC using sodium cyanoborohydride or dimethylamine-borane complex indicated slight recovery of derivatives, but pyridine-borane achieved better recoveries. Reversed-phase high-performance liquid chromatography (HPLC) analyses of monosaccharides constituting glycoprotein glycans using fluorimetric detection revealed linearity for 0.2fmol to 1pmol, with less than 5% RSD quantitation reproducibility. Reversed-phase HPLC analyses of glycoprotein glycans, combined with negative-ion electrospray ionization mass spectrometry (LC-ESI-MS), enabled their structural determination. Using this highly hydrophobic reagent, AMC-labeled oligosaccharides displayed one-order to two-order higher ESI-MS intensity than derivatives labeled using other reagents.  相似文献   

2.
A simple, sensitive, and reproducible quantitative liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was designed for the simultaneous quantification of monosaccharides derived from glycoprotein and blood serum using a multiple‐reaction monitoring (MRM) approach. Sialic acids and neutral monosaccharides were efficiently separated using an amino‐bonded silica phase column. Neutral monosaccharide molecules were detected as their aldol acetate anion adducts [M + CH3CO2]? using electrospray ionization in negative ion MRM mode, while sialic acids were detected as deprotonated ions [M–H]?. The new method did not require a reduction step, and exhibited very high sensitivity to carbohydrates with limits of detection of 1 pg for the sugars studied. The linearity of the described approach spanned over three orders of magnitude (pg to ng). The method was validated for monosaccharides originating from N‐linked glycans attached to glycoproteins and glycoproteins found in human blood serum. The method effectively quantified monosaccharides originating from as little as 1 µg of glycoprotein and 5 µL of blood serum. The method was robust, reproducible, and highly sensitive. It did not require reduction, derivatization or postcolumn addition of reagents. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The therapeutic and immunological properties of biopharmaceuticals are governed by the glycoforms contained in them. Thus, bioinformatics tools capable of performing comprehensive characterization of glycans are significantly important to the biopharma industry. The primary structural elucidation of glycans using mass spectrometry is tricky and tedious in terms of spectral interpretation. In this study, the biosimilars of a therapeutic monoclonal antibody and an Fc-fusion protein with moderate and heavy glycosylation, respectively, were employed as representative biopharmaceuticals for released glycan analysis using liquid chromatography–tandem mass spectrometry instead of conventional mass spectrometry-based analysis. SimGlycan® is a software with proven ability to process tandem MS data for released glycans could identify eight additional glycoforms in Fc-fusion protein biosimilar, which were not detected during mass spectrometry analysis of released glycans or glyco-peptide mapping of the same molecule. Thus, liquid chromatography–tandem mass spectrometry analysis of released glycans not only complements conventional liquid chromatography–mass spectrometry-based glycan profiling but can also identify additional glycan structures that may otherwise be omitted during conventional liquid chromatography–tandem mass spectrometry based analysis of mAbs. The mass spectrometry data processing tools, such as PMI Byos™, SimGlycan®, etc., can display pivotal analytical capabilities in automated liquid chromatography–mass spectrometry and liquid chromatography–tandem mass spectrometry-based glycan analysis workflows, especially for high-throughput structural characterization of glycoforms in biopharmaceuticals.  相似文献   

4.
In this work we demonstrate the potential of glycan reductive isotope labeling (GRIL) using [12C]- and [13C]-coded aniline and zwitterionic hydrophilic interaction capillary liquid chromatography electrospray mass spectrometry (μZIC-HILIC-ESI-MS) for relative quantitation of glycosylation variants in selected glycoproteins present in samples from cancer patients. Human α1-acid-glycoprotein (hAGP) is an acute phase serum glycoprotein whose glycosylation has been described to be altered in cancer and chronic inflammation. However, it is not clear yet whether some particular glycans in hAGP can be used as biomarker for differentiating between these two pathologies. In this work, hAGP was isolated by immunoaffinity chromatography (IAC) from serum samples of healthy individuals and from those suffering chronic pancreatitis and different stages of pancreatic cancer, respectively. After de-N-glycosylation, relative quantitation of the hAGP glycans was carried out using stable isotope labeling and μZIC-HILIC-ESI-MS analysis. First, protein denaturing conditions prior to PNGase F digestion were optimized to achieve quantitative digestion yields, and the reproducibility of the established methodology was evaluated with standard hAGP. Then, the proposed method was applied to the analysis of the clinical samples (control vs. pathological). Pancreatic cancer samples clearly showed an increase in the abundance of fucosylated glycans as the stage of the disease increases and this was unlike to samples from chronic pancreatitis. The results gained here indicate the mentioned glycan in hAGP as a candidate structure worth to be corroborated by an extended study including more clinical cases; especially those with chronic pancreatitis and initial stages of pancreatic cancer. Importantly, the results demonstrate that the presented methodology combining an enrichment of a target protein by IAC with isotope coded relative quantitation of N-glycans can be successfully used for targeted glycomics studies. The methodology is assumed being suitable as well for other such studies aimed at finding novel cancer associated glycoprotein biomarkers.  相似文献   

5.
Using recombinant human thrombomodulin (rhTM) expressed in Chinese hamster ovary (CHO) cells, we studied the structural analysis of a glycoprotein by liquid chromatography-mass spectrometry (LC-MS) and liquid chromatography with tandem mass spectrometry (LC-MS-MS). First, we analyzed the structure of both the O- and N-linked glycans in rhTM by oligosaccharide mapping using LC-MS equipped with a graphitized carbon column (GCC-LC-MS). Major O- and N-linked glycans were determined to be core 1 structure and fucosyl biantennary containing NeuAc(0-2) respectively. Next, the post-translational modifications and their heterogeneities, including the site-specific glycosylation, were analyzed by mass spectrometric peptide/glycopeptide mapping of trypsin-digested rhTM and precursor-ion scanning. Precursor-ion scanning was successful in the detection of five glycopeptides. Four N-glycosylation sites and their site-specific carbohydrate heterogeneity were determined by their mass spectra. O-Glycosylation could be estimated on the basis of its mass spectrum. We were able to identify partial beta-hydroxylation on Asn324 and Asn439, and O-linked glucose on Ser287 from the peptide/glycopeptide map and their mass spectra. We demonstrated that a sequential analysis of LC-MS and LC-MS-MS are very useful for the structural analysis of O- and N-linked glycans, polypeptides, and post-translational modifications and their heterogeneities, including site-specific glycosylation in a glycoprotein. Our method can be applied to a glycoprotein in biological samples.  相似文献   

6.
Applications of hydrophilic interaction chromatography for the analysis of biopharmaceutical drugs, i.e., glycosylated proteins represented by monoclonal antibodies are discussed in the manner of glycoproteomics. They can be analyzed using hydrophilic interaction chromatography in five different stages as (1) their intact forms, (2) their subunits, (3) N‐ and O‐glycopeptides digested by proteases, (4) N‐ and O‐glycans released from the glycoproteins or glycopeptides, and (5) monosaccharides. Hydrophilic interaction chromatography is a more useful tool in the order of (1) to (5). At the stages (4) and (5), quantitation of glycans and saccharides are also reported. Hydrophilic interaction chromatography is employed not only for analytical uses, but also pretreatment items as solid phase extraction, followed by reversed‐phase liquid chromatography separations. Comprehensive search results of these application of hydrophilic interaction chromatography are summarized in tables to show what kind of hydrophilic interaction chromatography columns are suitable for each step of analysis.Relationship of favored and less favored hydrophilic interaction chromatography columns and their separation characteristics such as hydrophilicity, and selectivity for structural difference, is also discussed. Analysis of the therapeutic peptides (not glycosylated) using hydrophilic interaction chromatography is summarized, too.  相似文献   

7.
A general strategy for the chromatographic and structural analysis of the monosaccharide species fucose (Fuc), N-acetylgalactosamine (GalNAc), N-acetylglucosamine (GlcNAc), galactose (Gal), glucose (Glc), mannose (Man), N-acetylneuraminic acid (NANA) present in glycoproteins is described. Qualitative and quantitative aspects for the separation of these glycoprotein monosaccharides (monosaccharide species) using ligand-exchange chromatography (LEC) and high pH anion-exchange chromatography (HPAEC) in combination with pulsed-amperometric detection (PAD), refractive index (RI) and ultraviolet (UV) monitoring are discussed in detail. The conditions for the acidic hydrolysis of glycoproteins and for the liquid chromatographic analyses of glycoprotein monosaccharides using HPAEC and LEC technique were optimised. Furthermore, the characterisation of glycoproteins according to their purity and molecular mass connected with a comparison to biomolecules that are not glycosylated or whose extent of glycosylation is low was carried out by means of matrix-assisted laser-desorption ionisation mass spectrometry (MALDI-MS). The identification of glycoprotein monosaccharides using an on-line coupling liquid chromatography mass spectrometry (LC-MS/MS) was performed by means of their characteristic quasi molecule ions such as (M + NH4)+ and (2M + NH4)+. The different chromatographic and structural methods used in combination with each other were applied to characterise and determine the monosaccharide species of fetuin and a membrane glycoprotein fraction.  相似文献   

8.
Protein N-Glycan analysis is traditionally performed by high pH anion exchange chromatography (HPAEC), reversed phase liquid chromatography (RPLC), or hydrophilic interaction liquid chromatography (HILIC) on fluorescence-labeled glycans enzymatically released from the glycoprotein. These methods require time-consuming sample preparations and do not provide site-specific glycosylation information. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) peptide mapping is frequently used for protein structural characterization and, as a bonus, can potentially provide glycan profile on each individual glycosylation site. In this work, a recently developed glycopeptide fragmentation model was used for automated identification, based on their MS/MS, of N-glycopeptides from proteolytic digestion of monoclonal antibodies (mAbs). Experimental conditions were optimized to achieve accurate profiling of glycoforms. Glycan profiles obtained from LC-MS/MS peptide mapping were compared with those obtained from HPAEC, RPLC, and HILIC analyses of released glycans for several mAb molecules. Accuracy, reproducibility, and linearity of the LC-MS/MS peptide mapping method for glycan profiling were evaluated. The LC-MS/MS peptide mapping method with fully automated data analysis requires less sample preparation, provides site-specific information, and may serve as an alternative method for routine profiling of N-glycans on immunoglobulins as well as other glycoproteins with simple N-glycans.
Figure
?  相似文献   

9.
The larger fragment of the transmembrane glycoprotein (GP1) and the soluble glycoprotein (sGP) of Ebola virus were expressed in human embryonic kidney cells and the secreted products were purified from the supernatant for carbohydrate analysis. The N‐glycans were released with PNGase F from within sodium dodecyl sulphate/polyacrylamide gel electrophoresis (SDS‐PAGE) gels. Identification of the glycans was made with normal‐phase high‐performance liquid chromatography (HPLC), matrix‐assisted laser desorption/ionisation mass spectrometry, negative ion electrospray ionisation fragmentation mass spectrometry and exoglycosidase digestion. Most glycans were complex bi‐, tri‐ and tetra‐antennary compounds with reduced amounts of galactose. No bisected compounds were detected. Triantennary glycans were branched on the 6‐antenna; fucose was attached to the core GlcNAc residue. Sialylated glycans were present on sGP but were largely absent from GP1, the larger fragment of the transmembrane glycoprotein. Consistent with this was the generally higher level of processing of carbohydrates found on sGP as evidenced by a higher percentage of galactose and lower levels of high‐mannose glycans than were found on GP1. These results confirm and expand previous findings on partial characterisation of the Ebola virus transmembrane glycoprotein. They represent the first detailed data on carbohydrate structures of the Ebola virus sGP. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
A major lysosomal membrane glycoprotein (LGP107) which has an apparent molecular weight (Mr) of 107 kilodaltons (kDa) was purified from rat liver by a simple method with a yield of 1 mg/87 g wet weight of liver. The purification procedures include; preparation of tritosomal membranes of triton-filled lysosomes (tritosomes), extraction of tritosomal membranes by Lubrol PX, wheat germ agglutinin (WGA)-Sepharose affinity chromatography, and monoclonal antibody-Sepharose affinity chromatography. The quantitative immunoblot analysis indicated that LGP107 represents 6.2% of the total protein of tritosomal membranes. The isoelectric point of the purified glycoprotein was 2.7, and it moved toward neutral pH after sialidase treatment, with its molecular weight decreased by about 10 kDa. LGP107 contained 52% carbohydrates, and the carbohydrate moiety was compared of Fuc, Man, Gal, GlcNAc and sialic acid in a molar ratio of 7.2:68.2:40.6:63.0:32.3, respectively, indicating that LGP107 was highly glycosylated with N-linked complex-type olgosaccharide chains. Out of the N-linked glycans released from the glycoprotein by hydrazinolysis/N-reacetylation, about 70% was sialylated. Anion exchange and reverse-phase high performance liquid chromatography analysis on the structure of N-glycans revealed that a disialyl biantennary form is a major component in the oligosaccharide chains of LGP107.  相似文献   

11.
Two methods are presented for the determination of 'respectively' the plasma protein unbound and total concentration of acyclovir in horse plasma and body fluids: first, a liquid-liquid extraction was performed on plasma, combined with HPLC-fluorescence detection for the total plasma concentration; second a more sensitive method using high-performance liquid chromatography combined with heated electrospray ionization tandem mass spectrometry (LC-HESI-MS/MS) was described for plasma and for body fluids analysis. To obtain the unbound concentration of acyclovir in plasma, a simple deproteinization step using a Microcon filter was performed. Ganciclovir was used as an internal standard. Analysis was carried out on an Inertsil 5 ODS-3 column for the HPLC-fluorescence method. For the LC-HESI-MS/MS method a PLRP-S column was used. The limit of quantification (LOQ) for the total concentration was set at 50 and 2 ng mL(-1) for the HPLC-fluorescence method and the LC-HESI-MS/MS method, respectively. The limit of quantification for the unbound concentration was set at 5 ng mL(-1) and at 2 ng mL(-1) for body fluids. The methods were successfully used to perform pharmacokinetic and clinical studies in horses after intravenous and oral dosage of acyclovir and its prodrug valacyclovir.  相似文献   

12.
Glycosylation is one of the most common yet diverse post-translational modifications. Information on glycan heterogeneity and glycosite occupancy is increasingly recognized as crucial to understanding glycoprotein structure and function. Yet, no approach currently exists with which to holistically consider both the proteomic and glycomic aspects of a system. Here, we developed a novel method of comprehensive glycosite profiling using nanoflow liquid chromatography/mass spectrometry (nano-LC/MS) that shows glycan isomer-specific differentiation on specific sites. Glycoproteins were digested by controlled non-specific proteolysis in order to produce informative glycopeptides. High-resolution, isomer-sensitive chromatographic separation of the glycopeptides was achieved using microfluidic chip-based capillaries packed with graphitized carbon. Integrated LC/MS/MS not only confirmed glycopeptide composition but also differentiated glycan and peptide isomers and yielded structural information on both the glycan and peptide moieties. Our analysis identified at least 13 distinct glycans (including isomers) corresponding to five compositions at the single N-glycosylation site on bovine ribonuclease B, 59 distinct glycans at five N-glycosylation sites on bovine lactoferrin, 13 distinct glycans at one N-glycosylation site on four subclasses of human immunoglobulin G, and 20 distinct glycans at five O-glycosylation sites on bovine κ-casein. Porous graphitized carbon provided effective separation of glycopeptide isomers. The integration of nano-LC with MS and MS/MS of non-specifically cleaved glycopeptides allows quantitative, isomer-sensitive, and site-specific glycoprotein analysis.  相似文献   

13.
A practical way for reducing contaminants, such as humic acids, and solving column-clogging problem in environmental water analysis with liquid chromatography is proposed. Detection interference by contamination is one of the most important issues of the environmental analyses. Moreover, due to the recent smaller diameter and fine particle size of an analytical column for HPLC system, a column-clogging problem is another practical difficulty as well. We found it possible to solve these problems by employing column-switching HPLC, which consists of a pretreatment column containing surface-modified polymer particles and flow changeover valves for cleaning the remaining matrices in the pretreatment column prior to analysis. This method was successfully applied to actual HPLC-fluorescence detection of bisphenol A. Limit of detection (LOD) in real sample was <0.7 ng/L. Repeatability was around 1.4% and recovery was around 97% or more. A particular pressure increase was not observed in 150 repeated analyses of real river water samples.  相似文献   

14.
A rapid procedure is described for the qualitative and quantitative analysis of the carbohydrate composition of glycoproteins by liquid chromatography with light-scattering detection. The analysis was carried out in three steps. First, the glycoprotein samples were purified by a two-step purification on a Sephadex G-25 column with a 90% yield. Second, the selectivity of the separation and the sensitivity of detection of monosaccharides, as methyl glycosides obtained by direct methanolysis of glycoproteins, were improved by modified simplex optimization of the methanolysis parameters (temperature, methanolic hydrochloric acid strength and reaction time) determined at 66 degrees C, 1.2 M and 8.1 h for alpha 1-acid glycoprotein (alpha-AGP) and 73 degrees C, 1.5 M and 12.5 h for tissue plasminogen activator (tPA). Finally, the method was applied to the determination of the carbohydrate moiety of the two N-glycosylated glycoproteins alpha-AGP and tPA.  相似文献   

15.
Hua S  An HJ  Ozcan S  Ro GS  Soares S  DeVere-White R  Lebrilla CB 《The Analyst》2011,136(18):3663-3671
Glycosylation is highly sensitive to the biochemical environment and has been implicated in many diseases including cancer. Glycan compositional profiling of human serum with mass spectrometry has already identified potential biomarkers for several types of cancer and diseases; however, composition alone does not fully describe glycan stereo- and regioisomeric diversity. The vast structural heterogeneity of glycans presents a formidable analytical challenge. We have developed a method to identify and quantify isomeric native glycans using nanoflow liquid chromatography (nano-LC)/mass spectrometry. A microfluidic chip packed with graphitized carbon was used to chromatographically separate the glycans. To determine the utility of this method for structure-specific biomarker discovery, we analyzed serum samples from two groups of prostate cancer patients with different prognoses. More than 300 N-glycan species (including isomeric structures) were identified, corresponding to over 100 N-glycan compositions. Statistical tests established significant differences in glycan abundances between patient groups. This method provides comprehensive, selective, and quantitative glycan profiling.  相似文献   

16.
We have previously demonstrated that liquid chromatography/mass spectrometry equipped with a graphitized carbon column (GCC-LC/MS) is useful for the structural analysis of carbohydrates in a glycoprotein. Here, we studied the monosaccharide composition analysis and quantitative oligosaccharide profiling by GCC-LC/MS. Monosaccharides were labeled with 2-aminopyridine and then separated and monitored by GCC-LC/MS in the selective ion mode. The use of tetradeuterium-labeled pyridylamino (d4-PA) monosaccharides as internal standards, which were prepared by the tagging of standard monosaccharides with hexadeuterium-labeled 2-aminopyridine (d6-AP), afforded a good linearity and reproducibility in ESIMS analysis. This method was successfully applied to the monosaccharide composition analysis of model glycoproteins, fetuin, and erythropoietin. For quantitative oligosaccharide profiling, oligosaccharides released from an analyte and a standard glycoprotein were tagged with d0- and d6-AP, respectively, and an equal amount of d0- and d4-PA oligosaccharides were coinjected into GCC-LC/MS. In this procedure, the oligosaccharides that existed in either analyte or a standard glycoprotein appeared as single ions, and the oligosaccharides that existed in both analyte and a standard glycoprotein were detected as paired ions. The relative amount of analyte oligosaccharides could be determined on the basis of the analyte/internal standard ion-pair intensity ratio. The quantitative oligosaccharide profiling enabled us to make a quantitative and qualitative comparison of glycosylation between the analyte and standard glycoproteins. The isotope tag method can be applicable for quality control and comparability assessment of glycoprotein products as well as the analysis of glycan alteration in some diseases.  相似文献   

17.
Hydrophilic-interaction liquid chromatography (HILIC), reversed-phase chromatography (RPC) and porous graphitic carbon (PGC) chromatography are typically applied for liquid chromatographic separations of protein N-glycans. Hence the performances of these chromatography modes for the separation of fluorescently labeled standard glycan samples (monoclonal antibody, fetuin, ribonuclease-B) covering high-mannose and a broad range of complex type glycans were investigated. In RPC the retention of sialylated glycans was enhanced by adding an ion-pairing agent to the mobile phase, resulting in improved peak shapes for sialylated glycans compared to methods recently reported in literature. For ion pairing RPC (IP-RPC) and HILIC ultra-high performance stationary phases were utilized to maximize the peak capacity and thus the resolution. But due to the shallow gradient in RPC the peak capacity was lower than on PGC. Retention times in HILIC and IP-RPC could be correlated to the monosaccharide compositions of the glycans by multiple linear regression, whereas no adequate model was obtained for PGC chromatography, indicating the significance of the three-dimensional structure of the analytes for retention in this method. Generally low correlations were observed between the chromatography methods, indicating their orthogonality. The high selectivities, as well as the commercial availability of ultra-high performance stationary phases render HILIC the chromatography method of choice for the analysis of glycans. Even though for complete characterization of complex glycan samples a combination of chromatography methods may be necessary.  相似文献   

18.
Glycosides in tobacco leaves are highly important aromatic precursors. It is necessary to reveal glycosides in tobacco leaves to improve tobacco planting and processing. This study describes a method for the systematic screening of glycosides in tobacco leaves by liquid chromatography with tandem mass spectrometry. Although glycosides contain numerous aglycones, the number of glycans is limited. Based on a screening table of glycans designed for neutral loss scan, glycosides with different aglycones were systematically screened out. Then, the MS2 fragment spectra of scanned glycosides were further obtained using product ion scan. By comparison with the spectra in online tandem mass spectral databases, reported references, and verification by commercial standards, 64 glycosides were detected, including 39 glycosides linked with monosaccharides, 18 glycosides linked with disaccharides and 7 glycosides linked with trisaccharides. It is noteworthy that glycosides linked with trisaccharides have previously been rarely reported in tobacco. This method appears to be a useful tool for the systematic screening and characterization of glycosides in tobacco and can potentially be applied to other plants.  相似文献   

19.
以花生种子总蛋白及其主要致敏糖蛋白Ara h1为研究对象,采用"一釜法"对蛋白上的糖链进行释放并同时进行衍生化标记,通过C18固相萃取柱纯化,以电喷雾质谱(ESI-MS)、多级串联质谱(MSn)和亲水性液相色谱-质谱联用(HILIC-MS)进行结构解析和定量分析.结果表明,蛋白Ara h1共有10条N-糖链,其中7条为高甘露糖型,2条为木糖修饰,另外1条为与过敏原相关的核心α1,3-Fuc修饰N-糖链,其含量约占总糖链的12.45%.  相似文献   

20.
Summary Sonic spray ionization (SSI) was compared with atmospheric pressure chemical ionization (APCI) as an interface for liquid chromatography (LC)-mass spectrometry (MS) for the analysis of some local anesthetics. Peaks at [M+H]+ constituted the base peaks for all compounds by both SSI and APCI, except for prilocaine. The sensitivities by SSI for tetracaine, benzoxinate, dibucaine, bupivacaine and mepivacaine were 4–16 times higher than those by APCI; those by SSI for procaine and lidocaine were equivalent to those by APCI. Only for prilocaine was the sensitivity by SSI two times lower than that by APCI. In view of the higher sensitivities obtained for many local anesthetics by SSI, we established a detailed procedure for the assay of these drugs in human plasma and urine by LC-MS with SSI in combination with a diol-bonded silica gel HPLC column that enabled direct injection of crude biological samples without complicated pretreatment. The recoveries, sensitivities, accuracies and precisions were found satisfactory to quantitate them at their therapeutic levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号