首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
In this paper we consider the initial boundary value problem for a class of logarithmic wave equation. By constructing an appropriate Lyapunov function, we obtain the decay estimates of energy for the logarithmic wave equation with linear damping and some suitable initial data. The results extend the early results.  相似文献   

2.
In this paper, we give a positive answer to the open question raised in [E. Zuazua, Exponential decay for the semilinear wave equation with localized damping in unbounded domains, J. Math. Pures Appl., 70 (1991) 513–529] on the exponential decay of solutions for the semilinear plate equation with localized damping. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
ABSTRACT

This paper is concerned with the decay property of a nonlinear viscoelastic wave equation with linear damping, nonlinear damping and source term. Under weaker assumption on the relaxation function, we establish a general decay result, which extends the result obtained in Messaoudi [Exponential decay of solutions of a nonlinearly damped wave equation. Nodea-Nonlinear Differ Equat Appl. 2005;12:391–399].  相似文献   

4.
In this paper, we consider a system of coupled quasilinear viscoelastic equations with nonlinear damping. We use the perturbed energy method to show the general decay rate estimates of energy of solutions, which extends some existing results concerning a general decay for a single equation to the case of system, and a nonlinear system of viscoelastic wave equations to a quasilinear system.  相似文献   

5.
In this paper, we investigate asymptotic behavior for the solution of the Petrovsky equation with locally distributed damping. Without growth condition on the damping at the origin, we extend the energy decay result in Martinez (Rev. Math. Complut. Madr. 12(1):251–283, 1999) for the single wave equation to the Petrovsky equation. The explicit energy decay rate is established by using piecewise multiplier techniques and weighted nonlinear integral inequalities.  相似文献   

6.
In this paper, we consider the semilinear wave equation with boundary conditions. This work is devoted to prove the uniform decay rates of the wave equation with boundary, without imposing any restrictive growth near-zero assumption on the damping term.  相似文献   

7.
We investigate the initial value problem for a class of nonlinear wave equations of sixth order with damping. The decay structure of this equation is of the regularity‐loss type, which causes difficulty in high‐frequency region. By using the Fourier splitting frequency technique and energy method in Fourier space, we establish asymptotic profiles of solutions to the linear equation that is given by the convolution of the fundamental solutions of heat and free wave equation. Moreover, the asymptotic profile of solutions shows the decay estimate of solutions to the corresponding linear equation obtained in this paper that is optimal under some conditions. Finally, global existence and optimal decay estimate of solutions to this equation are also established. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper we consider a semilinear wave equation, in a bounded domain, where the memory-type damping is acting on a part of the boundary. We establish a general decay result, from which the usual exponential and polynomial decay rates are only special cases. Our work allows certain relaxation functions which are not necessarily of exponential or polynomial decay and, therefore, generalizes and improves earlier results in the literature.  相似文献   

9.
The main result of this paper provides uniform decay rates obtained for the energy function associated with a three-dimensional structural acoustic model described by coupled system consisting of the wave equation and plate equation with the coupling on the interface between the acoustic chamber and the wall. The uniform stabilization is achieved by introducing a nonlinear dissipation acting via boundary forces applied at the edge of the plate and viscous or boundary damping applied to the wave equation. The results obtained in this paper extend, to the non-analytic, hyperbolic-like setting, the results obtained previously in the literature for acoustic problems modeled by structurally damped plates (governed by analytic semigroups). As a bypass product, we also obtain optimal uniform decay rates for the Euler Bernoulli plate equations with nonlinear boundary dissipation acting via shear forces only and without (i) any geometric conditions imposed on the domain ,(ii) any growth conditions at the origin imposed on the nonlinear function. This is in contrast with the results obtained previously in the literature ([22] and references therein).  相似文献   

10.
We consider the decay rate of energy of the 1D damped original nonlinear wave equation. We first construct a new energy function. Then, employing the perturbed energy method and the generalized Young’s inequality, we prove that, with a general growth assumption on the nonlinear damping force near the origin, the decay rate of energy is governed by a dissipative ordinary differential equation. This allows us to recover the classical exponential, polynomial, or logarithmic decay rate for the linear, polynomial or exponentially degenerating damping force near the origin, respectively. Unlike the linear wave equation, the exponential decay rate constant depends on the initial data, due to the nonlinearity.  相似文献   

11.
A n-dimensional quasiliner wave equation with nonlinear boundary dissipation is considered. Global existence, uniqueness and uniform decay rates are established for the model, under the assumption that the H1(Ω)xL2(Ω') norms of the initial data are sufficiently small. The result presented in this paper extends/generalizes those obtained those obtained recently in (13), where, by contrast, interior nonlinear damping was considered; and those obtained in (31), where the one-dimensional wave equation with linear boundary damping was treated.  相似文献   

12.
In this paper, we consider the viscoelastic wave equation with Balakrishnan–Taylor damping. This work is devoted to prove uniform decay rates of the energy without imposing any restrictive growth assumption on the damping term and weakening the usual assumptions on the relaxation function. Our estimate depends both on the behavior of the damping term near zero and on behavior of the relaxation function at infinity.  相似文献   

13.
In this paper we consider the decay and blow-up properties of a viscoelastic wave equation with boundary damping and source terms. We first extend the decay result (for the case of linear damping) obtained by Lu et al. (On a viscoelastic equation with nonlinear boundary damping and source terms: Global existence and decay of the solution, Nonlinear Analysis: Real World Applications 12 (1) (2011), 295-303) to the nonlinear damping case under weaker assumption on the relaxation function g(t). Then, we give an exponential decay result without the relation between g(t) and g(t) for the linear damping case, provided that ‖gL1(0,) is small enough. Finally, we establish two blow-up results: one is for certain solutions with nonpositive initial energy as well as positive initial energy for both the linear and nonlinear damping cases, the other is for certain solutions with arbitrarily positive initial energy for the linear damping case.  相似文献   

14.
This paper is concerned with the asymptotic stability and instability of solutions to a variable coefficient logarithmic wave equation with nonlinear damping and memory term. Such model describes wave traveling through nonhomogeneous viscoelastic materials. By choosing appropriate multiplier and using weighted energy method, we prove the exponential decay of the energy. Moreover, we also obtain the instability of the solutions at the infinity in the presence of the nonlinear damping.  相似文献   

15.
We derive energy decay estimates of the Kirchhoff type wave equation with a localized damping term in a bounded domain. The damping coefficient function may act alive only on a neighborhood of some part of the boundary.  相似文献   

16.
In this paper, we consider a nonlinear viscoelastic wave equation with nonlinear boundary damping and source terms. Under some appropriate assumptions on the relaxation function g and with certain initial data, the global existence of solutions and a general decay for the energy have been established.  相似文献   

17.
A uniform local energy decay result is derived to the linear wave equation with spatial variable coefficients. We deal with this equation in an exterior domain with a star-shaped complement. Our advantage is that we do not assume any compactness of the support on the initial data, and its proof is quite simple. This generalizes a previous famous result due to Morawetz [The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14 (1961) 561-568]. In order to prove local energy decay, we mainly apply two types of ideas due to Ikehata-Matsuyama [L2-behaviour of solutions to the linear heat and wave equations in exterior domains, Sci. Math. Japon. 55 (2002) 33-42] and Todorova-Yordanov [Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001) 464-489].  相似文献   

18.
The paper considers a particular type of closed-loop for the wave equation in one space dimension with damping acting at an arbitrary internal point, for which the uniform stabilization with exponential decay rate is shown. Applications to chains of coupled strings are also discussed. © 1997 by B. G. Teubner Stuttgart–John Wiley & Sons Ltd.  相似文献   

19.
In this paper, we consider a viscoelastic wave equation of variable coefficients in the presence of past history with nonlinear damping and delay in the internal feedback and dynamic boundary conditions. Under suitable assumptions, we establish an explicit and general decay rate result without imposing restrictive assumption on the behavior of the relaxation function at infinity by Riemannian geometry method and Lyapunov functional method.  相似文献   

20.
We consider a wave equation with nonlinear acoustic boundary conditions. This is a nonlinearly coupled system of hyperbolic equations modeling an acoustic/structure interaction, with an additional boundary damping term to induce both existence of solutions as well as stability. Using the methods of Lasiecka and Tataru for a wave equation with nonlinear boundary damping, we demonstrate well-posedness and uniform decay rates for solutions in the finite energy space, with the results depending on the relationship between (i) the mass of the structure, (ii) the nonlinear coupling term, and (iii) the size of the nonlinear damping. We also show that solutions (in the linear case) depend continuously on the mass of the structure as it tends to zero, which provides rigorous justification for studying the case where the mass is equal to zero.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号