首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wei-qiang CHEN&#  &#  &#  &#  &#  Kai-yu YANG&#  &#  &#  &#  &#  Yi ZHOU&#  &#  &#  &#  Fu-chun ZHANG&#  &#  &#  &#  &# 《Frontiers of Physics》2009,4(4):447
Superconductivity in iron pnictides is studied by using a two-orbital Hubbard model in the large U limit. The Coulomb repulsion induces an orbital-dependent pairing between charge carriers. The pairing is found mainly from the scattering within the same Fermi pocket where usually one single orbital dominates. The inter-pocket pair scatterings determine the symmetry of the singlet superconductivity, which is an extended s-wave at small Hund’s coupling, and d-wave at large Hund’s coupling and large U. The former is consistent with recent experiments of ARPES and Andreev reflection spectroscopy. Spin triplet states only become important at large exchange interaction J.  相似文献   

2.
The upper critical field is determined for an even-parity singlet pairing state in the presence of arbitrary spin-orbit scattering. Comparison with critical field experiments suggests that superconductivity in CeCu2Si2 is a singlet pairing state, and in UBe13 is either a triplet pairing state or is a singlet state with restrictive conditions that the pair orbital be nearly isotropic and that strong spin-orbit scattering increase strongly as the field increases.  相似文献   

3.
Based on the boundary conditions derived for quasiclassical Green’s functions, a theory of Andreev reflection in ferromagnet-superconductor point contacts is constructed. From a comparison with experimental data, the polarization of the conduction band was estimated for a number of ferromagnetic materials used in experiments on Andreev spectroscopy.  相似文献   

4.
We study the reflection of wave packets of quasiparticles from surfaces of a superfluid Fermi liquid. The reflection process is accompanied by changes in the internal structure of the wave packet. One finds particle-hole conversion (Andreev reflection), and a changed magnetization of the wave packet. The latter effect is a special consequence of triplet pairing and is related to the spontaneously broken spin-orbit symmetry. A particularly striking example is a non-magnetic wave packet that is split by the surface into two magnetic ones moving in different directions.  相似文献   

5.
By combining the Dirac equation of relativistic quantum mechanics with the Bogoliubov-de Gennes equation of superconductivity we investigate the electron-hole conversion at a normal-metal-superconductor interface in graphene. We find that the Andreev reflection of Dirac fermions has several unusual features: (1) the electron and hole occupy different valleys of the band structure; (2) at normal incidence the electron-hole conversion happens with unit efficiency in spite of the large mismatch in Fermi wavelengths at the two sides of the interface; and, most fundamentally: (3) away from normal incidence the reflection angle may be the same as the angle of incidence (retroreflection) or it may be inverted (specular reflection). Specular Andreev reflection dominates in weakly doped graphene, when the Fermi wavelength in the normal region is large compared to the superconducting coherence length.  相似文献   

6.
Pairing isomers     
The formalism for quadrupole pairing forces acting simultaneously with monopole pairing and quadrupole particle-hole forces has been worked out in the framework of BCS and RPA. The low-lying 0+ states are studied. Expressions for E0 and E2 transition probabilities as well as spectroscopic amplitudes for (t, p) and (p, t) reactions are given. The formalism is applied to the actinide region and it is shown that the low-lying 0+ states strongly populated in (p, t) but not in (t, p) reactions can be explained as pairing isomers having an appreciably smaller value of the pairing gap Δ than the ground state. This phenomenon is similar to the phenomenon of gapless superconductivity in solid state physics, i.e. the pairing isomers are formed because of the inhomogeneity of oblate and prolate levels in the vicinity of the Fermi surface.  相似文献   

7.
We introduce quantum maps with particle-hole conversion (Andreev reflection) and particle-hole symmetry, which exhibit the same excitation gap as quantum dots in the proximity to a superconductor. Computationally, the Andreev maps are much more efficient than billiard models of quantum dots. This makes it possible to test analytical predictions of random-matrix theory and semiclassical chaos that were previously out of reach of computer simulations. We have observed the universal distribution of the excitation gap for a large Lyapunov exponent and the logarithmic reduction of the gap when the Ehrenfest time becomes comparable to the quasiparticle dwell time.  相似文献   

8.
We use the framework of a general quasiclassical theory of superconductivity which allows for arbitrary gap and Fermi surface anisotropy and for impurity scattering in Born approximation. We derive general Ginzburg-Landau integro-differential equations, which comprise all previous limiting cases considered in the literature. From these equations more specialized Ginzburg-Landau equations may easily be derived.  相似文献   

9.
We provide an overview over the following eleven contributions on superconductivity in copper-oxygen and iron-based compounds. The main objective of this volume is an improved general understanding of superconductivity at high transition temperatures. The key questions on the way towards understanding superconducting pairing beyond electron-phonon coupling are spelled out, and the present status of theoretical reasoning is summarized. The crucial experiments, their results and interrelations are discussed. The central result is that fluctuations of spin and charge contribute substantially to superconductivity and also to other ordering phenomena. Methodically, the simultaneous analysis of results obtained from different experimental techniques such as photoelectron spectroscopy and neutron scattering, on one and the same sample, turned out to be of pivotal importance.  相似文献   

10.
基于Bogoliubov-de Gennes方程和Blonder-Tinkham-Klapwijk理论研究了三维拓扑绝缘体基铁磁/各向异性f-波超导隧道结的Andreev反射,其中f-波超导体选取f1和f2-波两种配对势.研究发现,对于f1和f2波,铁磁体中的磁能隙可以增强传统的Andreev逆向反射,但对Andreev镜面反射有抑制作用;但随着施加在超导体顶部电极上的栅极电位的增加,两种类型的反射都会增强.通过改变磁能隙,可以调节两种反射在准粒子输运过程中占有优势的程度.这些结果提供了一种实验检测拓扑绝缘体薄膜中镜面Andreev反射的方法.此外,隧穿电导和散粒噪声谱的差异可用于区分f1和f2波配对势.  相似文献   

11.
Recent experiments have introduced a new concept for analyzing the photoemission spectra of correlated electrons-the remnant Fermi surface (rFs), which can be measured even in systems which lack a conventional Fermi surface. Here, we analyze the rFs in a number of interacting electron models, and find that the results fall into two classes. For systems with particle-particle (pairing) instabilities, the rFs is an accurate replica of the true Fermi surface. In the presence of particle-hole (nesting) instabilities, the rFs is a map of the resulting superlattice Brillouin zone. The results suggest that the gap in Ca2CuO2Cl2 is of particle-hole origin.  相似文献   

12.
This paper gives methods to calculate the pairing temperature T*,at which a pseudogap is opened,and the superconducting temperature Tc,at which superconductivity appears,in the high-Tc cuprates,and demonstrates directly that at Tc < T < T* the pseudogap is the gap of Cooper pair without long-range phase coherence,and at T < Tc there is long-range phase coherence between Cooper pairs.Based on the above clear physical picture on the pseudogap state and our mechanism for the ac Josephson effect,this paper proposes that there should be a novel oscillatory current in P-I-P junction,induced by a constant bias on the junction.Here,P represents the high-Tc curates in the pseudogap state,where Cooper pairs do not have long-range phase coherence,and I represents the thin insulating barrier.This paper conjectures that there is a possible high-temperature superconductivity in the heavily underdoped high-Tc cuprates.  相似文献   

13.
It is shown that the Coulomb superconducting pairing in systems with the Fermi contour nesting can be described by a quasi-one-dimensional potential oscillating in real space. The supplement of this repulsive potential with an isotropic pairing attraction corresponding to the phonon superconductivity mechanism and including the effect of predominant forward scattering upon electron-phonon interaction leads to symmetrization of this potential and a considerable increase in the superconducting transition temperature.  相似文献   

14.
Motivated by recent experiments, we study the electronic structure near impurities in the chains of YBa2Cu3O6+x. Using a model of proximity induced chain superconductivity, we show that a resonance state in the chain density of states is induced only by a magnetic impurity. The spatial form of the resonance reflects the particle-hole nature of chain superconductivity and therefore distinguishes it from other broken symmetry phases. Because of quantum interference effects between impurities, the chains can undergo a quantum phase transition into a polarized state.  相似文献   

15.
A crucial step in revealing the nature of unconventional superconductivity is to investigate the symmetry of the superconducting order parameter. Scanning tunneling spectroscopy has proven a powerful technique to probe this symmetry by measuring the quasiparticle interference (QPI) which sensitively depends on the superconducting pairing mechanism. A particularly well-suited material to apply this technique is the stoichiometric superconductor LiFeAs as it features clean, charge neutral cleaved surfaces without surface states and a relatively high T(c)~18 K. Our data reveal that in LiFeAs the quasiparticle scattering is governed by a van Hove singularity at the center of the Brillouin zone which is in stark contrast to other pnictide superconductors where nesting is crucial for both scattering and s(±) superconductivity. Indeed, within a minimal model and using the most elementary order parameters, calculations of the QPI suggest a dominating role of the holelike bands for the quasiparticle scattering. Our theoretical findings do not support the elementary singlet pairing symmetries s(++), s(±), and d wave. This brings to mind that the superconducting pairing mechanism in LiFeAs is based on an unusual pairing symmetry such as an elementary p wave (which provides optimal agreement between the experimental data and QPI simulations) or a more complex order parameter (e.g., s+id wave symmetry).  相似文献   

16.
In this article, we review the state of the art on the transport properties of quantum dot systems connected to superconducting and normal electrodes. The review is mainly focused on the theoretical achievements, although a summary of the most relevant experimental results is also given. A large part of the discussion is devoted to the single-level Anderson-type models generalized to include superconductivity in the leads, which already contains most of the interesting physical phenomena. Particular attention is paid to the competition between pairing and Kondo correlations, the emergence of π-junction behavior, the interplay of Andreev and resonant tunneling, and the important role of Andreev bound states that characterized the spectral properties of most of these systems. We give technical details on the several different analytical and numerical methods which have been developed for describing these properties. We further discuss the recent theoretical efforts devoted to extend this analysis to more complex situations like multidot, multilevel or multiterminal configurations in which novel phenomena is expected to emerge. These include control of the localized spin states by a Josephson current and also the possibility of creating entangled electron pairs by means of non-local Andreev processes.  相似文献   

17.
The recently discovered superconductor Cu(x)Bi2Se3 is a candidate for three-dimensional time-reversal-invariant topological superconductors, which are predicted to have robust surface Andreev bound states hosting massless Majorana fermions. In this work, we analytically and numerically find the linearly dispersing Majorana fermions at k=0, which smoothly evolve into a new branch of gapless surface Andreev bound states near the Fermi momentum. The latter is a new type of Andreev bound states resulting from both the nontrivial band structure and the odd-parity pairing symmetry. The tunneling spectra of these surface Andreev bound states agree well with a recent point-contact spectroscopy experiment [S. Sasaki et al., Phys. Rev. Lett. 107, 217001 (2011)] and yield additional predictions for low temperature tunneling and photoemission experiments.  相似文献   

18.
We study Andreev states near atomic scale modulations in the pairing potential in both s- and d-wave superconductors with short coherence lengths. For a moderate reduction of the local gap, the states exist only close to the gap edge. If one allows for local sign changes of the order parameter, however, resonances can occur at energies close to the Fermi level. The local density of states (LDOS) around such pairing potential defects strongly resembles the patterns observed by tunneling measurements around Zn impurities in Bi2Sr2CaCu2O8+x (BSCCO). We discuss how this phase impurity model of the Zn LDOS pattern can be distinguished from other proposals experimentally.  相似文献   

19.
We investigated superconducting AuIn2 by point-contact spectroscopy. Andreev reflexion was observed with nearly full excess current at contact sizes down to 0.15 nm. This implies, together with a large superconducting coherence length of 11 μm, almost ideal retroreflectivity. At the onset of lateral confinement of the ballistic electrons the Andreev-derived spectra broaden dramatically due to inelastic scattering at defects or the strain field near the contact. Lateral confinement does not suppress Andreev reflexion.  相似文献   

20.
We investigated superconducting AuIn2 by point-contact spectroscopy. Andreev reflexion was observed with nearly full excess current at contact sizes down to 0.15 nm. This implies, together with a large superconducting coherence length of 11 μm, almost ideal retroreflectivity. At the onset of lateral confinement of the ballistic electrons the Andreev-derived spectra broaden dramatically due to inelastic scattering at defects or the strain field near the contact. Lateral confinement does not suppress Andreev reflexion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号