首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cross‐linked azobenzene liquid‐crystalline polymer films with a poly(oxyethylene) backbone are synthesized by photoinitiated cationic copolymerization. Azobenzene moieties in the film surface toward the light source are simultaneously photoaligned during photopolymerization with unpolarized 436 nm light and thus form a splayed alignment in the whole film. The prepared films show reversible photoinduced bending behavior with opposite bending directions when different surfaces of one film face to ultraviolet light irradiation.

  相似文献   


2.
Serial novel chiral polydiacetylenes (PDAs) are efficiently prepared at room temperature by the controllable electrophoretic deposition of diacetylenes with tunable structure as designed from easily available starting materials. The colorimetrically reversible properties of PDAs in the range between 25 and 85 °C are influenced by the different amino acid moiety in the PDAs as anticipated. The PDA containing aromatic ring is much better for the colorimetrically reversible properties, while irreversible thermochromism is displayed for the PDA with the structure of the longer methylene units in the main chain of amino acid moiety.

  相似文献   


3.
Endowing unimolecular soft nanoobjects with biomimetic functions is attracting significant interest in the emerging field of single‐chain technology. Inspired by the compartmentalized structure and polymerase activity of metalloenzymes, copper‐containing compact nanoglobules have been designed, synthesized, and characterized endowed with metalloenzyme mimicking characteristics toward controlled synthesis of water‐soluble polymers and thermoresponsive hydrogels. When compared to metalloenzymes, artificial nanoobjects endowed with metalloenzyme mimicking characteristics offer increased stability against thermal changes and reduced degradability by hydrolytic enzymes.

  相似文献   


4.
Polymeric nanosheets organized by molecular building blocks bearing specifically oriented reactive groups provide abundant and versatile strategies for tailoring structure and chemical functionality periodically over extended length scales that complement graphene. Here we report the bulk synthesis of free‐standing polymeric nanosheets via spatially confined polymerization from an elaborate 2D supramolecular system composed of two liquid‐crystalline lamellar bilayer membranes of a self‐assembled nonionic surfactant—dodecylglyceryl itaconate (DGI)—sandwiched by a water layer. By employing a covalent polymerization on the lamellar bilayer membranes, single‐bilayer‐thick (4.2 nm), and large area (greater than 100 μm2) polymeric nanosheets of bilayer membranes are achieved. The polymeric nanosheets could serve as a well‐defined 2D platform for post‐functionalization for producing advanced hybrid materials by introducing the reactions on the hydroxyl groups at the head of DGI on the outer surfaces.

  相似文献   


5.
The sodium salt of the new bis(mesitoyl)phosphinic acid (BAPO‐OH) can be prepared in a very efficient one‐pot synthesis. It is well soluble in water and hydrolytically stable for at least several weeks. Remarkably, it acts as an initiating agent for the surfactant‐free emulsion polymerization (SFEP) of styrene to yield monodisperse, spherical nanoparticles. Time‐resolved electron paramagnetic resonance (TR‐EPR) and chemically induced electron polarisation (CIDEP) indicate preliminary mechanistic insights.

  相似文献   


6.
A linear supramolecular polymer based on the self‐assembly of an easily available copillar[5]arene monomer is efficiently prepared, which is evidenced by the NMR spectroscopy, viscosity measurement, and DOSY experiment. The single‐crystal X‐ray analysis reveals that the polymerization of the AB‐type monomer is driven by the quadruple CH•••π interactions and one CH•••O interaction.

  相似文献   


7.
The synthesis of poly(ionic liquid) (PIL) nanoparticles grafted with a poly(N‐isopropyl acrylamide) (PNIPAM) brush shell is reported, which shows responsiveness to temperature and ionic strength in an aqueous solution. The PIL nanoparticles are first prepared via aqueous dispersion polymerization of a vinyl imidazolium‐based ionic liquid monomer, which is purposely designed to bear a distal atom transfer radical polymerization (ATRP) initiating group attached to the long alkyl chain via esterification reaction. The size of the PIL nanoparticles can be readily tuned from 25 to 120 nm by polymerization at different monomer concentrations. PNIPAM brushes are successfully grafted from the surface of the poly(ionic liquid) nanoparticles via ATRP. The stimuli‐responsive behavior of the poly(ionic liquid) nanoparticles grafted with PNIPAM brushes (NP‐g‐PNIPAM) in aqueous phase is studied in detail. Enhanced colloidal stability of the NP‐g‐PNIPAM brush particles at high ionic strength compared to pure PIL nanoparticles at room temperature is achieved. Above the lower critical solution temperature (LCST) of PNIPAM, the brush particles remain stable, but a decrease in hydrodynamic radius due to the collapse of the PNIPAM brush onto the PIL nanoparticle surface is observed.

  相似文献   


8.
Similar to the traditional self‐assembly strategy, polymerization induced self‐assembly and reorganization (PISR) can produce a myriad of polymeric morphologies through morphology transitions. Besides the chain length ratio (R) of the hydrophobic to the hydrophilic blocks, the chain mobility in the intermediate nano‐objects, which is a requisite for morphology transition, is a determining factor in the formation of the final morphology. Although various morphologies have been fabricated, hexagonally packed hollow hoops (HHHs) with highly ordered internal structure have not, to the best of our knowledge, been prepared by PISR. In this article, the fabrication of HHHs through morphology transition from large compound vesicles to HHHs is reported. HHHs with highly regular internal structure may have significance in theoretical research and practical applications of nanomaterials.

  相似文献   


9.
Herein, for rate‐tunable controlled release, the authors report a new facile method to prepare multiresponsive amphiphilic supramolecular diblock copolymers via the cooperative complexation between a water‐soluble pillar[10]arene and paraquat‐containing polymers in water. This supramolecular diblock copolymer can self‐assemble into multiresponsive polymeric micelles at room temperature in water. The resultant micelles can be further used in the controlled release of small molecules with tunable release rates depending on the type of single stimulus and the combination of various stimuli.

  相似文献   


10.
A novel type of emulsion gel based on star‐polymer‐stabilized emulsions is highlighted, which contains discrete hydrophobic oil and hydrophilic aqueous solution domains. Well‐defined phenol‐functionalized core‐crosslinked star polymers are synthesized via reversible addition‐fragmentation chain transfer (RAFT)‐mediated dispersion polymerization and are used as stabilizers for oil‐in‐water emulsions. Horseradish‐peroxidase‐catalyzed polymerization of the phenol moieties in the presence of H2O2 enables rapid formation of crosslinked emulsion gels under mild conditions. The crosslinked emulsion gels exhibit enhanced mechanical strength, as well as widely tunable composition.

  相似文献   


11.
The host–guest complexation between a porphyrin‐based 3D tetragonal prism ( H ) and electron‐rich pyrene is investigated. This host–guest molecular recognition is further utilized to suppress the liquid‐crystalline behavior of a nematic molecule ( G ) containing cyanobiphenyl mesogens functionalized with a pyrenyl unit. Furthermore, coronene, with an increased number of π‐electrons, is used as a competitive guest to recover the liquid‐crystalline behavior of G . This supramolecular approach provides a glimpse of the new possibilities to modulate the structures of the mesophases.

  相似文献   


12.
A series of fluorene‐based conjugated polymers containing the aggregation‐induced emissive (AIE)‐active tetraphenylethene and dicarboxylate pseudocrown as a receptor exhibits a unique dual‐mode sensing ability for selective detection of lead ion in water. Fluorescence turn‐off and turn‐on detections are realized in 80%–90% and 20% water in tetrahydrofuran (THF), respectively, for lead ion with a concentration as low as 10−8 m .

  相似文献   


13.
The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition–fragmentation chain transfer (RAFT) solution polymerization of n‐butyl acrylate with the aid of simulations, explicitly accounting for the chain length distribution of all macrospecies types. Since perfect isothermicity can be established in a microreactor, less side products due to backbiting and β‐scission are formed compared to the batch operation in which ineffective heat removal leads to an undesirable temperature spike. For a given RAFT chain transfer agent (CTA), additional microstructural control results under microflow conditions by optimizing the reaction temperature, lowering the dilution degree, or decreasing the initial molar ratio of monomer to RAFT CTA.

  相似文献   


14.
Here, the preparation of a novel block copolymer consisting of a statistical copolymer N‐(2‐hydroxypropyl) methacrylamide‐s‐N‐(3‐aminopropyl) methacrylamide and a short terminal 3‐guanidinopropyl methacrylamide block is reported. This polymer structure forms neutral but water‐soluble nanosized complexes with siRNA. The siRNA block copolymer complexes are first analyzed using agarose gel electrophoresis and their size is determined with fluorescence correlation spectroscopy. The protective properties of the polymer against RNA degradation are investigated by treating the siRNA block copolymer complexes with RNase V1. Heparin competition assays confirm the efficient release of the cargo in vitro. In addition, the utilization of microscale thermophoresis is demonstrated for the determination of the binding strength between a fluorescently labeled polyanion and a polymer molecule.

  相似文献   


15.
Diarylbutadiyne derivatives are ideal monomers for providing the π‐electron‐conjugated system of polydiacetylenes (PDAs). The geometrical parameters for diacetylene topochemical polymerization are known. However, control of the molecules under these parameters is yet to be addressed. This work shows that by simply tailoring diarylbutadiyne with amide side‐chain substituents, the arrangement of the substituents and the resulting hydrogen bond framework allows formation of π‐electron‐conjugated PDA.

  相似文献   


16.
The combination of external potential dynamics and Brownian dynamics is introduced to study the kinetics of orientational ordering in block copolymer/superparamagnetic nanoparticle composites where the particles are smaller than the domain spacing and preferentially segregate into one block of the copolymer. This simulation method accounts for both excluded volume interactions and dipolar interactions between particles to quantify alignment kinetics. Two‐dimensional simulations reveal that higher dipolar interaction strengths lead to faster alignment of the block copolymer, where the orientation kinetics obeys an exponential rate law. The observed rate of alignment increases with increasing dipolar interaction strength and is dependent on the initial state of the block copolymer. The primary mechanism of orientational ordering is found to be the redistribution of monomer segments leading to bridging and growth of the block copolymer domains around the nanoparticles.

  相似文献   


17.
Metallocenes are organometallic compounds with reversible redox profiles and tunable oxidation and reduction potentials, depending on the metal and substituents at the cyclopentadienyl rings. Metallocenes have been introduced in macromolecules to combine the redox‐activity with polymer properties. There are many examples of such hydrophobic polymer materials, but much fewer water‐soluble examples are found scattered across the polymer literature. However, in terms of drug delivery and other biological applications, water solubility is essential. For this very reason, all the synthetic routes to water‐soluble metallocene containing polymers are collected and discussed here. The focus is on neutral ferrocene‐ and ruthenocene‐containing and charged cobaltocenium‐containing macromolecules (i.e., symmetrical sandwich complexes). The synthetic protocols, self‐assembly behavior, and other benefits of the obtained materials are discussed.

  相似文献   


18.
The glucose oxidase and glucose mediated formation of amphipilic copolymers of N‐(ferrocenoylmethyl)acrylamide (NFMA) and N,N‐diethylacrylamide (DEA) in aqueous cyclodextrin solution is presented. Thereby, NFMA is not only a comonomer but also part of the redox initiation system. The obtained copolymers contain NFMA units between 1 and 10 mol%. The molecular masses of the copolymers are dependent on the ferrocene content, whereupon molecular weights between 38 000 and 71 000 g mol−1 are achieved.

  相似文献   


19.
Acetone containing tetraalkylammonium chloride is found to be an efficient solvent for cellulose. The addition of an amount of 10 mol% (based on acetone) of well‐soluble salt triethyloctylammonium chloride (Et3OctN Cl) adjusts the solvent's properties (increases the polarity) to promote cellulose dissolution. Cellulose solutions in acetone/Et3OctN Cl have the lowest viscosity reported for comparable aprotic solutions making it a promising system for shaping processes and homogeneous chemical modification of the biopolymer. Recovery of the polymer and recycling of the solvent components can be easily achieved.

  相似文献   


20.
Dynamic covalent hydrogels are facilely prepared from biocompatible polysaccharides in physiological conditions by the formation of phenylboronate ester cross‐links. This is based on the simple mixing of carboxylate‐containing polysaccharides (i.e., hyaluronic acid or carboxymethylcellulose) modified with phenylboronic acid and maltose moieties according to mild coupling reactions performed in aqueous solution. The formation of dynamic networks based on reversible boronic‐ester cross‐links is demonstrated by analyzing their rheological behavior. This study shows that these gels can adapt their structure in response to chemical stimuli such as variations in pH or addition of glucose and self‐heal.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号