首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Generalized Nash equilibrium problems (GNEPs) allow, in contrast to standard Nash equilibrium problems, a dependence of the strategy space of one player from the decisions of the other players. In this paper, we consider jointly convex GNEPs which form an important subclass of the general GNEPs. Based on a regularized Nikaido-Isoda function, we present two (nonsmooth) reformulations of this class of GNEPs, one reformulation being a constrained optimization problem and the other one being an unconstrained optimization problem. While most approaches in the literature compute only a so-called normalized Nash equilibrium, which is a subset of all solutions, our two approaches have the property that their minima characterize the set of all solutions of a GNEP. We also investigate the smoothness properties of our two optimization problems and show that both problems are continuous under a Slater-type condition and, in fact, piecewise continuously differentiable under the constant rank constraint qualification. Finally, we present some numerical results based on our unconstrained optimization reformulation.  相似文献   

2.
We consider an optimization reformulation approach for the generalized Nash equilibrium problem (GNEP) that uses the regularized gap function of a quasi-variational inequality (QVI). The regularized gap function for QVI is in general not differentiable, but only directionally differentiable. Moreover, a simple condition has yet to be established, under which any stationary point of the regularized gap function solves the QVI. We tackle these issues for the GNEP in which the shared constraints are given by linear equalities, while the individual constraints are given by convex inequalities. First, we formulate the minimization problem involving the regularized gap function and show the equivalence to GNEP. Next, we establish the differentiability of the regularized gap function and show that any stationary point of the minimization problem solves the original GNEP under some suitable assumptions. Then, by using a barrier technique, we propose an algorithm that sequentially solves minimization problems obtained from GNEPs with the shared equality constraints only. Further, we discuss the case of shared inequality constraints and present an algorithm that utilizes the transformation of the inequality constraints to equality constraints by means of slack variables. We present some results of numerical experiments to illustrate the proposed approach.  相似文献   

3.
Error bounds (estimates for the distance to the solution set of a given problem) are key to analyzing convergence rates of computational methods for solving the problem in question, or sometimes even to justifying convergence itself. That said, for the generalized Nash equilibrium problems (GNEP), the theory of error bounds had not been developed in depth comparable to the fields of optimization and variational problems. In this paper, we provide a systematic approach which should be useful for verifying error bounds for both specific instances of GNEPs and for classes of GNEPs. These error bounds for GNEPs are based on more general results for constraints that involve complementarity relations and cover those (few) GNEP error bounds that existed previously, and go beyond. In addition, they readily imply a Lipschitzian stability result for solutions of GNEPs, a subject where again very little had been known. As a specific application of error bounds, we discuss Newtonian methods for solving GNEPs. While we do not propose any significantly new methods in this respect, some new insights into applicability to GNEPs of various approaches and into their convergence properties are presented.  相似文献   

4.
This paper deals with the generalized Nash equilibrium problem (GNEP), i.e. a noncooperative game in which the strategy set of each player, as well as his payoff function, depends on the strategies of all players. We consider an equivalent optimization reformulation of GNEP using a regularized Nikaido–Isoda function so that solutions of GNEP coincide with global minima of the optimization problem. We then propose a derivative-free descent type method with inexact line search to solve the equivalent optimization problem and we prove that our algorithm is globally convergent. The convergence analysis is not based on conditions guaranteeing that every stationary point of the optimization problem is a solution of GNEP. Finally, we present the performance of our algorithm on some examples.  相似文献   

5.
In this article we study generalized Nash equilibrium problems (GNEP) and bilevel optimization side by side. This perspective comes from the crucial fact that both problems heavily depend on parametric issues. Observing the intrinsic complexity of GNEP and bilevel optimization, we emphasize that it originates from unavoidable degeneracies occurring in parametric optimization. Under intrinsic complexity, we understand the involved geometrical complexity of Nash equilibria and bilevel feasible sets, such as the appearance of kinks and boundary points, non-closedness, discontinuity and bifurcation effects. The main goal is to illustrate the complexity of those problems originating from parametric optimization and singularity theory. By taking the study of singularities in parametric optimization into account, the structural analysis of Nash equilibria and bilevel feasible sets is performed. For GNEPs, the number of players’ common constraints becomes crucial. In fact, for GNEPs without common constraints and for classical NEPs we show that—generically—all Nash equilibria are jointly nondegenerate Karush–Kuhn–Tucker points. Consequently, they are isolated. However, in presence of common constraints Nash equilibria will constitute a higher dimensional set. In bilevel optimization, we describe the global structure of the bilevel feasible set in case of a one-dimensional leader’s variable. We point out that the typical discontinuities of the leader’s objective function will be caused by follower’s singularities. The latter phenomenon occurs independently of the viewpoint of the optimistic or pessimistic approach. In case of higher dimensions, optimistic and pessimistic approaches are discussed with respect to possible bifurcation of the follower’s solutions.  相似文献   

6.
We define the concept of reproducible map and show that, whenever the constraint map defining the quasivariational inequality (QVI) is reproducible then one can characterize the whole solution set of the QVI as a union of solution sets of some variational inequalities (VI). By exploiting this property, we give sufficient conditions to compute any solution of a generalized Nash equilibrium problem (GNEP) by solving a suitable VI. Finally, we define the class of pseudo-Nash equilibrium problems, which are (not necessarily convex) GNEPs whose solutions can be computed by solving suitable Nash equilibrium problems.  相似文献   

7.
The generalized Nash equilibrium problem (GNEP) is a generalization of the standard Nash equilibrium problem, in which each player’s strategy set may depend on the rival players’ strategies. The GNEP has recently drawn much attention because of its capability of modeling a number of interesting conflict situations in, for example, an electricity market and an international pollution control. However, a GNEP usually has multiple or even infinitely many solutions, and it is not a trivial matter to choose a meaningful solution from those equilibria. The purpose of this paper is two-fold. First we present an incremental penalty method for the broad class of GNEPs and show that it can find a GNE under suitable conditions. Next, we formally define the restricted GNE for the GNEPs with shared constraints and propose a controlled penalty method, which includes the incremental penalty method as a subprocedure, to compute a restricted GNE. Numerical examples are provided to illustrate the proposed approach.  相似文献   

8.
In this paper, we extend the literature by adapting the Nikaidô–Isoda function as an indicator function termed as regularized indicator Nikaidô–Isoda function, and this is demonstrated to guarantee existence of a solution. Using this function, we present two constrained optimization reformulations of the generalized Nash equilibrium problem (GNEP for short). The first reformulation characterizes all the solutions of GNEP as global minima of the optimization problem. Later this approach is modified to obtain the second optimization reformulation whose global minima characterize the normalized Nash equilibria. Some numerical results are also included to illustrate the behaviour of the optimization reformulations.  相似文献   

9.
In this paper we reformulate the generalized Nash equilibrium problem (GNEP) as a nonsmooth Nash equilibrium problem by means of a partial penalization of the difficult coupling constraints. We then propose a suitable method for the solution of the penalized problem and we study classes of GNEPs for which the penalty approach is guaranteed to converge to a solution. In particular, we are able to prove convergence for an interesting class of GNEPs for which convergence results were previously unknown.  相似文献   

10.
New Constrained Optimization Reformulation of Complementarity Problems   总被引:3,自引:0,他引:3  
We suggest a reformulation of the complementarity problem CP(F) as a minimization problem with nonnegativity constraints. This reformulation is based on a particular unconstrained minimization reformulation of CP(F) introduced by Geiger and Kanzow as well as Facchinei and Soares. This allows us to use nonnegativity constraints for all the variables or only a subset of the variables on which the function F depends. Appropriate regularity conditions ensure that a stationary point of the new reformulation is a solution of the complementarity problem. In particular, stationary points with negative components can be avoided in contrast to the reformulation as unconstrained minimization problem. This advantage will be demonstrated for a class of complementarity problems which arise when the Karush–Kuhn–Tucker conditions of a convex inequality constrained optimization problem are considered.  相似文献   

11.
This paper aims to consider an application of conjugate duality in convex optimization to the generalized Nash equilibrium problems with shared constraints and nonsmooth cost functions. Sufficient optimality conditions for the problems regarding to players are rewritten as inclusion problems and the maximal monotonicity of set-valued mappings generated by the subdifferentials of functions from data of GNEP is proved. Moreover, some assertions dealing with solutions to GNEP are obtained and applications of splitting algorithms to the oligopolistic market equilibrium models are presented.  相似文献   

12.
《Optimization》2012,61(2):365-388
Abstract

This article studies differentiability properties for a reformulation of a player convex generalized Nash equilibrium problem as a constrained and possibly nonsmooth minimization problem. By using several results from parametric optimization we show that, apart from exceptional cases, all locally minimal points of the reformulation are differentiability points of the objective function. This justifies a numerical approach which basically ignores the possible nondifferentiabilities.  相似文献   

13.
The generalized Nash equilibrium problem (GNEP) is an extension of the standard Nash game where, in addition to the cost functions, also the strategy spaces of each player depend on the strategies chosen by all other players. This problem is rather difficult to solve and there are only a few methods available in the literature. One of the most popular ones is the so-called relaxation method, which is known to be globally convergent under a set of assumptions. Some of these assumptions, however, are rather strong or somewhat difficult to understand. Here, we present a modified relaxation method for the solution of a certain class of GNEPs. The convergence analysis uses completely different arguments based on a certain descent property and avoids some of the technical conditions for the original relaxation method. Moreover, numerical experiments indicate that the modified relaxation method performs quite well on a number of different examples taken from the literature.  相似文献   

14.
The generalized Nash equilibrium problem (GNEP) is a generalization of the standard Nash equilibrium problem (NEP),in which both the utility function and the strategy space of each player depend on the strategies chosen by all other players.This problem has been used to model various problems in applications.However,the convergent solution algorithms are extremely scare in the literature.In this paper,we present an incremental penalty method for the GNEP,and show that a solution of the GNEP can be found by solving a sequence of smooth NEPs.We then apply the semismooth Newton method with Armijo line search to solve latter problems and provide some results of numerical experiments to illustrate the proposed approach.  相似文献   

15.
In this paper, we present a global optimization method for solving nonconvex mixed integer nonlinear programming (MINLP) problems. A convex overestimation of the feasible region is obtained by replacing the nonconvex constraint functions with convex underestimators. For signomial functions single-variable power and exponential transformations are used to obtain the convex underestimators. For more general nonconvex functions two versions of the so-called αBB-underestimator, valid for twice-differentiable functions, are integrated in the actual reformulation framework. However, in contrast to what is done in branch-and-bound type algorithms, no direct branching is performed in the actual algorithm. Instead a piecewise convex reformulation is used to convexify the entire problem in an extended variable-space, and the reformulated problem is then solved by a convex MINLP solver. As the piecewise linear approximations are made finer, the solution to the convexified and overestimated problem will form a converging sequence towards a global optimal solution. The result is an easily-implementable algorithm for solving a very general class of optimization problems.  相似文献   

16.
In this paper we investigate a class of cardinality-constrained portfolio selection problems. We construct convex relaxations for this class of optimization problems via a new Lagrangian decomposition scheme. We show that the dual problem can be reduced to a second-order cone program problem which is tighter than the continuous relaxation of the standard mixed integer quadratically constrained quadratic program (MIQCQP) reformulation. We then propose a new MIQCQP reformulation which is more efficient than the standard MIQCQP reformulation in terms of the tightness of the continuous relaxations. Computational results are reported to demonstrate the tightness of the SOCP relaxation and the effectiveness of the new MIQCQP reformulation.  相似文献   

17.
We consider the generalized Nash equilibrium problem which, in contrast to the standard Nash equilibrium problem, allows joint constraints of all players involved in the game. Using a regularized Nikaido-Isoda-function, we then present three optimization problems related to the generalized Nash equilibrium problem. The first optimization problem is a complete reformulation of the generalized Nash game in the sense that the global minima are precisely the solutions of the game. However, this reformulation is nonsmooth. We then modify this approach and obtain a smooth constrained optimization problem whose global minima correspond to so-called normalized Nash equilibria. The third approach uses the difference of two regularized Nikaido-Isoda-functions in order to get a smooth unconstrained optimization problem whose global minima are, once again, precisely the normalized Nash equilibria. Conditions for stationary points to be global minima of the two smooth optimization problems are also given. Some numerical results illustrate the behaviour of our approaches.  相似文献   

18.
A coordinate gradient descent method for nonsmooth separable minimization   总被引:1,自引:0,他引:1  
We consider the problem of minimizing the sum of a smooth function and a separable convex function. This problem includes as special cases bound-constrained optimization and smooth optimization with ?1-regularization. We propose a (block) coordinate gradient descent method for solving this class of nonsmooth separable problems. We establish global convergence and, under a local Lipschitzian error bound assumption, linear convergence for this method. The local Lipschitzian error bound holds under assumptions analogous to those for constrained smooth optimization, e.g., the convex function is polyhedral and the smooth function is (nonconvex) quadratic or is the composition of a strongly convex function with a linear mapping. We report numerical experience with solving the ?1-regularization of unconstrained optimization problems from Moré et al. in ACM Trans. Math. Softw. 7, 17–41, 1981 and from the CUTEr set (Gould and Orban in ACM Trans. Math. Softw. 29, 373–394, 2003). Comparison with L-BFGS-B and MINOS, applied to a reformulation of the ?1-regularized problem as a bound-constrained optimization problem, is also reported.  相似文献   

19.
In this paper, we show that an analogue of the classical conjugate gradient method converges linearly when applied to solving the problem of unconstrained minimization of a strictly convex quadratic spline. Since a strictly convex quadratic program with simple bound constraints can be reformulated as unconstrained minimization of a strictly convex quadratic spline, the conjugate gradient method is used to solve the unconstrained reformulation and find the solution of the original quadratic program. In particular, if the solution of the original quadratic program is nondegenerate, then the conjugate gradient method finds the solution in a finite number of iterations. This author's research is partially supported by the NASA/Langley Research Center under grant NCC-1-68 Supplement-15.  相似文献   

20.
An artificial neural network is proposed in this paper for solving the linear complementarity problem. The new neural network is based on a reformulation of the linear complementarity problem into the unconstrained minimization problem. Our new neural network can be easily implemented on a circuit. On the theoretical aspect, we analyze the existence of the equilibrium points for our neural network. In addition, we prove that if the equilibrium point exists for the neural network, then any such equilibrium point is both asymptotically and bounded (Lagrange) stable for any initial state. Furthermore, linear programming and certain quadratical programming problems (not necessarily convex) can be also solved by the neural network. Simulation results on several problems including a nonconvex one are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号