首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The synthesis and characterization of the new polyamino-phenolic ligand 3,3'-bis[N,N-bis(2-aminoethyl)aminomethyl]-2,2'-dihydroxybiphenyl (L) are reported. L contains two diethylenetriamine units linked by a 1,1'-bis(2-phenol) group (BPH) on the central nitrogen atom which allows two separate binding amino subunits in a noncyclic ligand. The basicity and binding properties of L toward Cu(II) and Zn(II) were determined by means of potentiometric measurements in aqueous solution (298.1 +/- 0.1 K, I = 0.15 mol dm-3). L behaves as a pentaprotic base and as a monoprotic acid under the experimental conditions used, yielding the H5L5+ or H-1L- species, respectively. L forms both mono- and dinuclear species with both metal ions investigated; the dinuclear species are largely prevalent in aqueous solution with a L/M(II) molar ratio of 1:2 at pH higher than 7. L shows different behavior in Cu(II) and Zn(II) binding, affecting the dinuclear species formed and the distance between the two coordinated metal ions, which is greater in the Zn(II) than in the Cu(II) dinuclear species. This difference can be attributed to the different degree of protonation of BPH which influences the angle between the phenyl rings in the two systems. In this way, it is possible to modulate the M(II)-M(II) distance by the choice M(II) and to space the two M(II) farther away than was possible with the previously synthesized ligands. L does not saturate the coordination sphere of the coordinated M(II) ions in the dinuclear species, and thus, these latter species are prone to add guests. 1H and 13C NMR experiments carried out in aqueous solution, as well as the crystal structures of the dinuclear Cu(II) and Zn(II) species formed in aqueous solution, aided in elucidating the involvement of L and BPH in Zn(II) and Cu(II) stabilization.  相似文献   

2.
The synthesis and characterization of new polydentate ligand 2-(N),2'-(N')-bis[2-(3-hydroxy-2-oxo-2H-pyridin-1-yl)acetamido]-1(N'),2(N),2'(N')-trimethyl-2,2'-diaminodiethylamine (L3) is reported. The coordination properties of L3 and of two analogous macrocyclic ligands (L1 and L2) toward Cu(II) and Zn(II) metal ions are reported. All three ligands show the 3-hydroxy-2(1H)-pyridinone (HPO) groups attached as sidearms to a polyaza fragment, which is a macrocyclic framework in the case of L1 and L2 while it is an open chain in the case of L3. The role of the polyaza fragments in preorganizing the two sidearms was investigated. The basicity of L3 and the binding properties of L1-L3 were determined by means of potentiometric measurements in aqueous solution (298.1 +/- 0.1 K, I = 0.15 mol dm(-3)). UV-vis spectra as well 1H and 13C NMR experiments were used to understand the role of the HPO and of the polyaza fragments in the stabilization of the cations. While L1 forms stable mono- and dinuclear complexes, L2 and L3 can form only mononuclear species with each of the metal ions investigated. In the main mononuclear species of L2 and L3, the two HPO moieties stabilize the M(II) in a square planar geometry due to the two oxygen atoms of each HPO. The coordination sphere of the metal is completed by adding a secondary ligand such as water molecules in the case of Cu(II) systems or OH- in the Zn(II) systems. These results are confirmed by the crystal structures of the [CuH(-1)L2]+ and [CuH(-1)L3]+ species reported herein. Two conformations of L1 can be hypothesized in the formation of the dinuclear species, as suggested by NMR experiments on the [ZnH(-2)L1] species, which shows two conformers slowly interchanging on the NMR time scale, one of which was found to be more insoluble.  相似文献   

3.
The synthesis and characterization of the new polyaza-phenolic-macrobicycle 32-hydroxy-1,4,7,10,13,16,19,22-octaazatricyclo-[11.11.7.1(26,30)]-diatriconta-26,28,Delta(30,32)-triene (L) are reported. L incorporates a 2,6-dimethyl-phenolic unit bridging two opposite amine functions of the [24]aneN(8) polyazamacrocyclic base to obtain a large cage. The basicity and binding properties of L toward Cu(II), Zn(II), and Cl(-) were determined by means of potentiometric measurements in aqueous solution (298.1 +/- 0.1 K, I = 0.15 mol dm(-3)). L can add up to six acidic protons, yielding the H(5)L(5+) species or the H(6)L(6+) species, depending on the ionic medium used. The molecular topology of L permits the formation of a highly positive three-dimensional cavity in the polyprotonated species that is able to host the chloride anion. This was detected both using potentiometric data, log K = 41.33 for the reaction L + 6H(+) + Cl(-) = H(6)LCl(5+), and in (35)Cl NMR experiments that showed interactions also with the H(5)L(5+) and H(4)L(4+) species. The anion is probably hosted inside the three-dimensional cavity of L, and stabilized by H-bonding interactions with the ammonium groups, as depicted in the crystal structure of the H(6)L(6+) cation reported. L forms mono- and dinuclear complexes with all the metal ions investigated; the dinuclear species are the only existing species with an L:M(II) molar ratio of 1:2 at pH higher than 6. The phenolate oxygen atom coordinates the two metal ions in a bridged disposition, drawing them inside the macrobicyclic cavity. The two metals were found to be quite isolated by the medium, and were coordinated by all the amine groups of L, as shown by the crystal structure of the dinuclear [Zn(2)H(-1)L](3+) species. This species can bind guests such as hydroxide and phosphate anions. Studies of anion binding in aqueous solution using pyrochatecol violet as the sensing guest revealed that the [Zn(2)H(-1)L](3+) species is able to bind one phosphate at physiological pH.  相似文献   

4.
Complex formation of the two tetraamine ligands (2S,3S)-1,2,3,4-tetraaminobutane (threo-tetraaminobutane, ttab) and (2R,3S)-1,2,3,4-tetraaminobutane (erythro-tetraaminobutane, etab) with Co(III), Ni(II), Cu(II), and Pd(II) was investigated in aqueous solution and in the solid state. For Ni(II) and Cu(II), the pH-dependent formation of a variety of species [Mn(II)xLyHz](2x+z)+ was established by potentiometric titrations and UV/Vis spectroscopy. In sufficiently acidic solutions the divalent cations formed a mononuclear complex with the doubly protonated ligand of composition [M(H2L)]4+. An example of such a complex was characterized in the crystal structure of [Pd(H2ttab)Cl2]Cl2.H2O. If the metal cation was present in excess, increase of pH resulted in the formation of dinuclear complexes [M2L]4+. Such a species was found in the crystal structure of [Cu2(ttab)Br4].H2O. Excess ligand, on the other hand, lead to the formation of a series of mononuclear bis-complexes [Mq(HxL)(HyL)](q+x+y)+. The crystal structure of [Co(Hetab)2][ZnCl4]2Cl. H2O with the inert, trivalent Co(III) center served as a model to illustrate the structural features of this class of complexes. By using an approximately equimolar ratio of the ligand and the metal cation, a variety of polymeric aggregates both in dilute aqueous solution and in the solid state were observed. The crystal structure of Cu2(ttab)3Br4, which exhibits a two-dimensional, infinite network, and that of [Ni8(ttab)12]Br16.17.5H2O, which contains discrete chiral [Ni8(ttab)12]16+ cubes with approximate T symmetry, are representative examples of such polymers. The energy of different diastereomeric forms of such complexes with the two tetraamine ligands were analyzed by means of molecular mechanics calculations, and the implications of these calculations for the different structures are discussed.  相似文献   

5.
Xing W  Ingman F 《Talanta》1982,29(8):707-711
The complexation reaction between Alizarin complexan ([3-N,N-di(carboxymethyl)aminomethyl]-1,2-dihydroxyanthraquinone; H(4)L) and zinc(II), nickel(II), lead(II), cobalt(II) and copper(II) has been studied by a spectrophotometric method. All these metal ions form 1:1 complexes with HL; 2:1 metal:ligand complex were found only for Pb(II) and Cu(II). The stability constants are (ionic strength I = 0.1, 20 degrees C): Zn(2+) + HL(3-) right harpoon over left harpoon ZnHL(-) log K +/- 3sigma(log K) = 12.19 +/- 0.09 (I = 0.5) Ni(2+) + HL(3-) right harpoon over left harpoon NiHL(-) log K +/- 3sigma(log K) = 12.23 +/- 0.21 Pb(2+) + HL(3-) right harpoon over left harpoon PbHL(-) log K +/- 3sigma(log K) = 11.69 +/- 0.06 PbHL(-) + Pb(2+) right harpoon over left harpoon Pb(2)L + H(+) log K approximately -0.8 Co(2+) + HL(3-) right harpoon over left harpoon CoHL(-) log K 3sigma(log K) = 12.25 + 0.13 Cu(2+) + HL(3-) right harpoon over left harpoon CuHL(-) log K 3sigma(log K) = 14.75 +/- 0.07 Cu(2+) + CuHL(-) right harpoon over left harpoon Cu(2)L + H(+) log K approximately 3.5 The solubility and stability of both the reagent and the complexes and the closenes of the values of the stability constants make this reagent suitable for the photometric detection of several metal ions in the eluate from an ion-exchange column.  相似文献   

6.
The synthesis and characterization of the new ligand 2,9-bis[N,N-bis(2-aminoethyl)aminomethyl]-1,10-phenanthroline (L) are reported. L contains two diethylenetriamine units connected on the central nitrogen atom by a 1,10-phenanthroline group forming a symmetrical branched ligand. The basicity and binding properties of L toward Cu(II) and Zn(II) in aqueous solution were determined by means of potentiometric, UV-vis, fluorescence, and 1H and 13C NMR techniques. L behaves as pentaprotic base under the experimental conditions used; from HL+ to H4L4+ species it is the secondary amine functions that are protonated while in the H5L5+ species also the phenanthroline is involved in protonation. L does not show fluorescence properties in the range of pH (0-14) investigated. It forms both mono- and dinuclear stable species where the phenanthroline is directly involved with both nitrogens in the coordination of the first metal which is coordinated in a pentacoordination environment also by one dien unit. The other dien unit undergoes easy protonation in the mononuclear complex while it binds the second metal in the dinuclear species. For this reason, L, in providing two different binding areas for metal coordination, behaves as an unsymmetrical compartmental ligand; one area is formed by one dien unit and by the phenanthroline, and the other by the remaining dien unit. This produces unsymmetrical metal complexes both for the mono- and dinuclear species; however, the role of the binding areas is fast exchanging in aqueous solution, at least on the NMR time scale. Solution studies and the three crystal structures of the [Zn(H2L)]4+, [[Cu(H2L)](ClO4)]3+, and [[Cu2LCl2](ClO4)]+ species highlight the unsymmetrical compartmental behavior of L as well as the host properties of the complexes in adding exogenous ligands such as hydroxide, pherchlorate, and chloride anions.  相似文献   

7.
The synthesis and characterization of two new polyazamacrocycles, 1,4,7,10-tetraaza[12](2,6)phenolphane (L1) and 1,4,7,10,13-pentaaza[15](2,6)phenolphane (L2), are reported. Both ligands incorporate the 2,6-phenolic unit within the cyclic framework. The basicity behavior and the ligational properties of L1 and L2 toward Ni(II), Zn(II), and Cu(II) were determined by means of potentiometric measurements in aqueous solution (298.1 +/- 0.1 K, I = 0.15 mol dm-3). UV spectra were used to understand the role of the phenolic function in the stabilization of the cations. L1 and L2 behave as pentaprotic bases under the experimental conditions used. The UV spectra showed that the deprotonation of the phenolic function occurs at low pH values for both ligands, giving rise to the simultaneous presence of positive and (one) negative charges on the macrocycle. While L1 forms only mononuclear complexes, L2 can also form binuclear species with all the metal ions investigated. In the mononuclear species of both ligands, one nitrogen atom close to the phenol remains unbound. The UV spectra revealed that the phenol, bridging the two metal ions in phenolate form, plays an important role in the stabilization of the binuclear complexes of L2. The coordination sphere of the two metals is completed by adding a secondary ligand such as water molecules or OH-, in any case preferring substrates able to bridge the two close metal ions. These results are confirmed by the crystal structure of [Ni2(C16H28ON5)(H2O)2Cl2]Cl.H2O.CH3OH (space group P21/a, a = 14.821(5) A, b = 10.270(4) A, c = 17.663(6) A, beta = 108.87(3) degrees, V = 2544(2) A3, Z = 4, R1 = 0.0973, wR2 = 0.2136). This structure displays a Ni(II) binuclear complex of L2 in which the phenolic oxygen and a chlorine ion bridge the two close Ni(II) ions.  相似文献   

8.
New N-(3-aminopropyl) (L1, L2) and (2-cyanoethyl) (L3, L4) derivatives of a 14-membered tetraazamacrocycle containing pyridine have been synthesized. The protonation constants of L1 and L2 and the stability constants of their complexes with Ni2+, Cu2+, Zn2+ and Cd2+ metal ions were determined in aqueous solutions by potentiometry, at 298.2 K and ionic strength 0.10 mol dm(-3) in KNO3. Both compounds have high overall basicity due to the presence of the aminopropyl arms. Their copper(II) complexes exhibit very high stability constants, which sharply decrease for the complexes of the other studied metal ions, as usually happens with polyamine ligands. Mono- and dinuclear complexes are formed with L2 as well as with L1, but the latter exhibits mononuclear complexes with slightly higher K(ML) values while the dinuclear complexes of L2 are thermodynamically more stable. The presence of these species in solution was supported by UV-VIS-NIR and EPR spectroscopic data. The single crystal structures of [Cu(H2L2)(ClO4)]3+ and [CoL3Cl]+ revealed that the metal centres are surrounded by the four nitrogen atoms of the macrocycle and one monodentate ligand, adopting distorted square pyramidal geometries. In the [CoL3Cl]+ complex, the macrocycle adopts a folded arrangement with the nitrogen atom opposite to the pyridine at the axial position while in the [Cu(H2L2)(ClO4)]3+ complex, the macrocycle adopts a planar conformation with the three aminopropyl arms located at the same side of the macrocyclic plane.  相似文献   

9.
With the aim of modeling the arrangement of redox-active and photoactive components along the electron-transfer pathway of photosystem II, tetra- to nonanuclear transition metal complexes have been synthesized, comprising one, two, or three manganese ions, oxidizable phenolates, and tris(2,2'-bipyridyl)ruthenium(II)-type units as photosensitizers. These model complexes are considered to be mononuclear ([LnMn](PF6)m), dinuclear ([L1aMnIV2(mu-O)2](PF6)6), or trinuclear ([LnMnIIMnIIMnIILn](PF6)12) with respect to the number of manganese centers present. Electronic coupling between the manganese ions is strongly antiferromagnetic in the case of the di(mu-oxo)-dimanganese compound [L1aMnIV2(mu-O)2](PF6)6, where the "ligand" [H2L1a]4+ consists of two tris(bipyridyl)ruthenium(II)-type units covalentely bound to a bismacrocyclic Me2dtne backbone to which the manganese ions are coordinated via an additional phenolate oxygen (Me2dtne = 1,2-bis(4-methyl-1,4,7-triazacyclononyl)ethane). Weak antiferromagnetic coupling is observed in compounds [LnMnIIMnIIMnIILn](PF6)12, where the three metals are in a linear arrangement (face-sharing octahedral). They are bridged by three phenolate oxygens of each of the deprotonated "ligands" [H3Ln]6+, respectively. Each ligand [H3Ln]6+ (n = 1, 2) consists of a tacn ring with three pendent arm phenols which are each bound to a tris(bipyridyl)ruthenium(II)-type unit (tacn = 1,4,7-triazacyclononane). In these compounds several electron-transfer steps were detected by electrochemical methods which are assigned to different redox processes located at individual electrochemically active components (Mn, Ru, bipyridyl, phenolate). For example, in the "mononuclear" compounds [LnMn](PF6)m (n = 1 or 2) Mn(II), Mn(III), and Mn(IV) are accessible and three Ru(II) centers are reversibly oxidized to Ru(III), and in addition, the coordinated phenolate can be oxidized to a highly reactive, coordinated phenoxyl radical. In several cases very slow heterogeneous electron-transfer rates were observed for redox processes involving the manganese centers.  相似文献   

10.
Cobalt(II), nickel(II), and copper(II) (1, 2, and 3) complexes of the dianionic form of the bis(phenolate) ligand N,N-bis(3,4-dimethyl-2-hydroxybenzyl)-N',N'-dimethylethylenediamine (H2L) have been synthesized by electrochemical oxidation of the appropriate metal in an acetonitrile solution of the ligand. When copper is used as the anode, the addition of 1,10-phenanthroline to the electrolytic phase gave rise to a different compound [CuL]2.2CH3CN (4). The compounds [CoL]2.2CH3CN (1), [Ni2L2(H2O)].H2O (2), [CuL]2.3H2O (3), and [CuL]2.2CH3CN (4) were characterized by microanalysis, IR, electronic spectroscopy, FAB mass spectrometry, magnetic measurements and by single-crystal X-ray diffraction. The crystal structures show that the complexes have a dinuclear structure. In compounds 1, 3, and 4, two metal ions are coordinated by the two amine nitrogens and the two phenol oxygen atoms of a deprotonated pendant phenol ligand, with one phenolic oxygen atom from ligand acting as a bridge. In compounds 1 and 3, each metal center has a geometry that is closest to trigonal bipyramidal. Magnetic susceptibility data for both compounds show an antiferromagnetic coupling with 2J = -15 cm(-1) for the cobalt(II) complex and a strong antiferromagnetic coupling with 2J = -654 cm(-1) for the copper(II) complex. However, in 4 the geometry around the metal is closer to square pyramidal and the compound shows a lower antiferromagnetic coupling (2J = -90 cm(-1)) than in 3. The nickel atoms in the dimeric compound 2 are hexacoordinate. The NiN2O4 chromophore has a highly distorted octahedral geometry. In this structure, a dianionic ligand binds to one nickel through the two amine nitrogen atoms and the two oxygen atoms and to an adjacent nickel via one of these oxygen atoms. The nickel atoms are linked through a triple oxygen bridge involving two phenolic oxygens, each from a different ligand, and an oxygen atom from a water molecule. The two nickel ions in 2 are ferromagnetically coupled with 2J = 19.8 cm(-1).  相似文献   

11.
Copper(II) complexes of the pentapeptides Ac-HisAlaHisValHis-NH2, Ac-HisValHisAlaHis-NH2, Ac-HisProHisAlaHis-NH2, Ac-HisAlaHisProHis-NH2, Ac-HisGlyHisValHis-NH2 and Ac-HisValHisGlyHis-NH2 have been studied by potentiometric, UV-Vis, CD and EPR spectroscopic methods. It has been found that the pentapeptides are efficient ligands for the complexation with copper(II) and exhibit an outstanding versatility in the co-ordination geometry of complexes. The presence of three histidyl residues provides a high possibility for the formation of macrochelates via the exclusive binding of imidazole-N donor atoms. The macrochelation suppresses, but cannot preclude the deprotonation and metal ion co-ordination of amide functions and the species [CuH(-2)L] and [Cu2H(-4)L] predominate at physiological pH in equimolar solutions and in the presence of excess metal ions, respectively. It is also clear from the data that both C-terminal and internal histidyl residues can work as the anchoring sites for metal binding and subsequent amide deprotonation resulting in the formation of co-ordination isomers and dinuclear species in equimolar solutions and in the presence of excess metal ions, respectively. In more alkaline solutions (pH approximately 10) a third amide function can be deprotonated and co-ordinated in the species [CuH(-3)L]- with (N-,N-,N-,N(im)) co-ordination. The dinuclear species [Cu2H(-5)L]- and [Cu2H(-6)L](2-) containing hydroxide ions and/or imidazolato bridges are formed at high pH in the presence of excess of metal ions. The insertion of one proline into the sequence preceding histidyl residues hinders the deprotonation of amide functions at that site and the formation of only mononuclear complexes was observed with these peptides.  相似文献   

12.
The reaction of Cu2+ acetate monohydrate with 2-[N,N'-bis(carboxymethyl)aminomethyl]-4-carboxyphenol (H4cacp), 2-[N,N-bis(carboxymethyl)aminomethyl]hydroquinone (H4cah) and the dinucleating 2,5-bis[N,N-bis(carboxymethyl)aminomethyl]hydroquinone (H6bicah) in water results in the formation of several Cu2+ species, which are in dynamic equilibrium in aqueous solution and their stability is pH dependent. A systematic crystallographic study of these species was pursued, resulting in the characterization of most of the species. Additional techniques were employed to characterize the molecules in the solid state (infrared spectroscopy) and in solution (UV-vis spectroscopy and electrochemistry). These measurements show that the Cu2+ ions are ligated mainly to the iminodiacetate at pH < 6, exhibiting only weak interactions with the phenol oxygen. At pH > 6, the phenol oxygen was deprotonated and dinuclear-bridged species, from the phenolate oxygen complexes exhibiting a Cu2+ 2O2 core, were isolated. The coordination environment around the copper ions varies between trigonal bipyramidal, tetragonal pyramidal and distorted octahedral geometries. The two unpaired electrons of the Cu2+ ions are found to be antiferromagnetically coupled. A survey of the magnetic and structural properties of the dinuclear phenoxide bridged Cu2+ complexes shows that the strength of the antiferromagnetic coupling is linearly dependent on the Cu-Ophenolate bond lengths, at bond distances below 1.98 angstroms. The effect of the Cu-O-Cu angles on the magnetic properties of the complexes is also discussed.  相似文献   

13.
The synthesis and characterization of two new macrocyclic ligands, the bis-macrocyclic compound 2,6-bis(1,4,13-triaza-7,10-dioxacyclopentadec-1-ylmethyl)phenol (L) and 38-methoxy-1,4,13,16,19,28-hexaaza-7,10,22,25-tetraoxatricyclo[14.14.7.1(32,36)]octatriconta-32,34,Delta(36,38)-triene (L1) are reported. Equilibrium studies of basicity and coordination properties toward metal ions such as Cu(II), Zn(II), Cd(II) and Pb(II) were performed for ligand by potentiometric measurements in aqueous solution (298.1 +/- 0.1 K, I= 0.15 mol dm(-3)). L behaves as a hexaprotic base (logK(1)= 10.93, logK(2)= 9.70, logK(3)= 8.79, logK(4)= 8.05, logK(5)= 6.83, logK(6)= 2.55). All metal ions form stable mono- and dinuclear complexes: logK(MLH(-1))= 25.61 for Cu(II), 15.37 for Zn(II), 12.58 for Cd(II) and 13.79 for Pb(II); logK(M(2)LH(-1))= 31.61 for Cu(II), 23.38 for Zn(II), 24.49 for Cd(II) and 23.68 for Pb(II). All these dinuclear species show a great tendency to add the OH(-) group: the equilibrium constant for the addition reaction was found to be logK(M(2)LH(-1)OH)= 4.77 for Cu(II), 5.66 for Zn(II), 2.8 for Cd(II) and 3.18 for Pb(II). In the case of Ni(II), kinetic inertness prevents the possibility of solution studies. The dinuclear solid adducts [Ni(2)H(-1)L(N(3))(3)].EtOH and [Cu(2)H(-1)L(N(3))](ClO(4))(2) were characterized by X-ray analysis.  相似文献   

14.
The synthesis, protonation and Cu(II) coordination features of the novel azacyclophane type receptors 2,6,10,13,17,21-hexaza[22]-(2,6)-pyridinophane (L2), 2,6,9,12,15,19-hexaza[20]-(2,6)-pyridinophane (L5) and 2,6,9,12,15,19-hexaza[20]metacyclophane (L6) are presented. The protonation and Cu(II) constants are analysed and compared with the previously reported open-chain polyamines 4,8,11,15-tetrazaoctadecane-1,18-diamine (L1) and 4,7,10,13-tetraazahexadecane-1,16-diamine (L4) and of the cyclophane 2,6,10,13,17,21-hexaaza[22]paracyclophane (L3). All the systems form mono- and dinuclear complexes whose stability and pH range of existence depend on the type of hydrocarbon chains and molecular topology. The effects of the cyclic or open-chain nature and of the presence of the pyridine rings on the protonation and formation of mono- and dinuclear complexes are discussed. Stopped-flow kinetic measurements on the acid-promoted decomposition of the Cu(II) complexes have been carried out for the different systems. With respect to the decomposition of the dinuclear complexes, because the size of the macrocycles forces both metal ions to be close to each other, the release of the first ion occurs within the mixing time of the stopped-flow except for the dinuclear complexes of L2. However, the most interesting kinetic result is the observation of different kinetics of decomposition for the different mononuclear complexes formed by a given ligand. This effect is especially evident for L3 and L6 and indicates a change in the coordination mode of the ligand for the different mononuclear species. Therefore the Cu(II) ion performs a slippage motion through the macrocyclic cavity driven by pH changes. The stopped-flow experiments are an excellent tool to detect these slippage processes that may be present for the complexes with other macrocycles.  相似文献   

15.
The interaction between Co(II) and Cu(II) ions with a Py(2)N(4)S(2)-coordinating octadentate macrocyclic ligand (L) to afford dinuclear compounds has been investigated. The complexes were characterized by microanalysis, conductivity measurements, IR spectroscopy and liquid secondary ion mass spectrometry. The crystal structure of the compounds [H(4)L](NO(3))(4), [Cu(2)LCl(2)](NO(3))(2) (5), [Cu(2)L(NO(3))(2)](NO(3))(2) (6), and [Cu(2)L(μ-OH)](ClO(4))(3)·H(2)O (7) was also determined by single-crystal X-ray diffraction. The [H(4)L](4+) cation crystal structure presents two different conformations, planar and step, with intermolecular face-to-face π,π-stacking interactions between the pyridinic rings. Complexes 5 and 6 show the metal ions in a slightly distorted square-pyramidal coordination geometry. In the case of complex 7, the crystal structure presents the two metal ions joined by a μ-hydroxo bridge and the Cu(II) centers in a slightly distorted square plane or a tetragonally distorted octahedral geometry, taking into account weak interactions in axial positions. Electron paramagnetic resonance spectroscopy is in accordance with the dinuclear nature of the complexes, with an octahedral environment for the cobalt(II) compounds and square-pyramidal or tetragonally elongated octahedral geometries for the copper(II) compounds. The magnetic behavior is consistent with the existence of antiferromagnetic interactions between the ions for cobalt(II) and copper(II) complexes, while for the Co(II) ones, this behavior could also be explained by spin-orbit coupling.  相似文献   

16.
Acetate and perchlorate dinuclear metal complexes of Co(II), Cu(II) and Zn(II) with the cresolate polypodal ligand having mixed phenolate and pyridyl pendant functionalities, H3L, have been synthesized. The complexes were characterized by microanalysis, LSI mass spectrometry, IR, UV–Vis spectroscopy, magnetic studies and conductivity measurements. Crystal structures of H3L, [Cu2(HL)(OAc)(H2O)2](OAc)·1.5H2O and [Zn2L(CH3OH)3](ClO4)CH3OH·2H2O complexes, have been also determined.  相似文献   

17.
The coordination properties of the ditopic oxa-aza macrocycles L1-L3 toward Ni(II) and Co(II) have been investigated by means of potentiometric and UV-vis spectrophotometric measurements. L1-L3 contain two triamine and/or tetraamine chains separated by two dioxa chains and form both mono- and dinuclear complexes in aqueous solution. In the [ML]2+ complexes, the metal ion is coordinated by one of the two polyamine moieties, while the other does not participate in the coordination. In the dinuclear complexes each metal ion is coordinated, almost independently, to a single polyamine moiety. Under aerobic conditions the binuclear Co(II) complexes of the ligands L1-L3 are able to bind molecular oxygen, with a bridging coordination of O2 between the two metals.  相似文献   

18.
The synthesis and characterization of the novel 24,29-dimethyl-6,7,15,16-tetraoxotetracyclo-[19.5.5.0(5,8).0(14,17)]-1,4,9,13,18,21,24,29-octaazaenatriaconta-Delta(5,8),Delta(14,17)-diene (L) are reported. Molecule L incorporates two squaramide functions in a overstructured chain connecting two opposite nitrogen atoms of the Me(2)[12]aneN(4) polyaza macrocyclic base to obtain a cage topology. The basicity and binding properties of L towards Cu(II) were determined by means of potentiometric measurements in aqueous solution (298.1+/-0.1 K, I=0.15 mol dm(-3)). Molecule L behaves as a diprotic base under the experimental conditions employed and forms only mononuclear Cu(II) complexes in which the squaramide moieties are not involved in the stabilization of the metal ion that is stabilized by the amine functions of the polyaza base inside the three-dimensional cavity. The [CuL](2+) species was tested as a host for the series of halide anions. UV-visible spectrophotometric experiments permitted the determination of the addition constants of halides to the Cu(II)-complexed species. The [CuL](2+) species binds the anions F(-), Cl(-), and Br(-) by forming the [CuLX](+) species, but does not bind the biggest I(-) anion. A trend of selectivity as a function of the hydrogen-bonding capability as well as the dimensions of the anion were established; the maximum value of selectivity was for addition of the F(-) anion (log K=4.8). This selectivity is due to the presence of the overstructured chain containing the squaramide groups up to the Me(2)[12]aneN(4) macrocyclic base. The squaramide groups, by providing hydrogen-bond contacts, permit the [CuL](2+) species to selectively bind these anions through the formation of a hydrogen-bond network with F(-) and Cl(-). The crystal structures of the [CuLF](+) and [CuLCl](+) cations support the results obtained in aqueous solution.  相似文献   

19.
We have prepared and characterized a new phenol-based compartmental ligand (H(2)L) incorporating 1,4,7-triazacyclononane ([9]aneN(3)), and we have investigated its coordination behavior with Cu(II), Zn(II), Cd(II), and Pb(II). The protonation constants of the ligand and the thermodynamic stabilities of the 1:1 and 2:1 (metal/ligand) complexes with these metal ions have been investigated by means of potentiometric measurements in aqueous solutions. The mononuclear [M(L)] complexes show remarkably high stability suggesting that, along with the large number of nitrogen donors available for metal binding, deprotonated phenolic functions are also involved in binding the metal ion. The mononuclear complexes [M(L)] show a marked tendency to add a second metal ion to afford binuclear species. The formation of complexes [M(2)(H(2)L)](4+) occurs at neutral or slightly acidic pH and is generally followed by metal-assisted deprotonation of the phenolic groups to give [M(2)(HL)](3+) and [M(2)(L)](2+) in weakly basic solutions. The complexation properties of H(2)L have also been investigated in the solid state. Crystals suitable for X-ray structural analysis were obtained for the binuclear complexes [Cu(2)(L)](BF(4))(2).(1)/(2)MeCN (1), [Zn(2)(HL)](ClO(4))(3).(1)/(2)MeCN (2), and [Pb(2)(L)](ClO(4))(2).2MeCN (4). In 1 and 2, the phenolate O-donors do not bridge the two metal centers, which are, therefore, segregated each within an N(5)O-donor compartment. However, in the case of the binuclear complex [Pb(2)(L)](ClO(4))(2).2MeCN (4), the two Pb(II) centers are bridged by the phenolate oxygen atoms with each metal ion sited within an N(5)O(2)-donor compartment of L(2)(-), with a Pb.Pb distance of 3.9427(5) A.  相似文献   

20.
The synthesis and characterization of three new bis([9]aneN(3)) ligands, containing respectively 2,2'-bipyridine (L(1)), 1,10-phenanthroline (L(2)), and quinoxaline (L(3)) moieties linking the two macrocyclic units, are reported. Proton binding and Cu(II), Zn(II), Cd(II), and Pb(II) coordination with L(1)-L(3) have been studied by potentiometric titrations and, for L(1) and L(2), by spectrophotometric UV-vis measurements in aqueous solutions. All ligands can give stable mono- and dinuclear complexes. In the case of L(1), trinuclear Cu(II) complexes are also formed. The stability constants and structural features of the formed complexes are strongly affected by the different architecture and binding properties of the spacers bridging the two [9]aneN(3) units. In the case of the L(1) and L(2) mononuclear complexes, the metal is coordinated by the three donors of one [9]aneN(3) moiety; in the [ML(2)](2+) complexes, however, the phenanthroline nitrogens are also involved in metal binding. Finally, in the [ML(3)](2+) complexes both macrocyclic units, at a short distance from each other, can be involved in metal coordination, giving rise to sandwich complexes. In the binuclear complexes each metal ion is generally coordinated by one [9]aneN(3) unit. In L(1), however, the dipyridine nitrogens can also act as a potential binding site for metals. The dinuclear complexes show a marked tendency to form mono-, di-, and, in some cases, trihydroxo species in aqueous solutions. The resulting M-OH functions may behave as nucleophiles in hydrolytic reactions. The hydrolysis rate of bis(p-nitrophenyl)phosphate (BNPP) was measured in aqueous solution at 308.1 K in the presence of the L(2) and L(3) dinuclear Zn(II) complexes. Both the L(2) complexes [Zn(2)L(2)(OH)(2)](2+) and [Zn(2)L(2)(OH)(3)](+) and the L(3) complex [Zn(2)L(3)(OH)(3)](+) promote BNPP hydrolysis. The [Zn(2)L(3)(OH)(3)](+) complex is ca. 2 orders of magnitude more active than the L(2) complexes, due both to the short distance between the metal centers in [Zn(2)L(3)(OH)(3)](+), which could allow a bridging interaction of the phosphate ester, and to the simultaneous presence of single-metal bound nucleophilic Zn-OH functions. These structural features are substantially corroborated by semiempirical PM3 calculations carried out on the mono-, di-, and trihydroxo species of the L(3) dizinc complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号