首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we study the numerical solutions to parabolic Volterra integro-differential equations in one-dimensional bounded and unbounded spatial domains. In a bounded domain, the given parabolic Volterra integro-differential equation is converted to two equivalent equations. Then, a Legendre-collocation method is used to solve them and finally a linear algebraic system is obtained. For an unbounded case, we use the algebraic mapping to transfer the problem on a bounded domain and then apply the same presented approach for the bounded domain. In both cases, some numerical examples are presented to illustrate the efficiency and accuracy of the proposed method.  相似文献   

2.
This paper is concerned with the numerical dissipativity of nonlinear Volterra functional differential equations (VFDEs). We give some dissipativity results of Runge-Kutta methods when they are applied to VFDEs. These results provide unified theoretical foundation for the numerical dissipativity analysis of systems in ordinary differential equations (ODEs), delay differential equations (DDEs), integro-differential equations (IDEs), Volterra delay integro-differential equations (VDIDEs) and VFDEs of other type which appear in practice. Numerical examples are given to confirm our theoretical results.  相似文献   

3.
In this paper, we investigate the long time behavior of non-Fickian delay reaction-diffusion equations. These kinds of Volterra integro-differential equations are derived by combining a time memory term in the flux and a delay parameter in the reaction term. Energy estimates, dissipativity, asymptotic stability, and contractivity of the problems are obtained. Moreover, we prove that the numerical method discussed in the present paper has the ability to preserve stability and contractivity of the underlying systems. Some confirmations of these are illustrated by using the numerical method on two biological models.  相似文献   

4.
The main purpose of this work is to provide a numerical method for the solution of Volterra functional integro-differential equations of neutral type based on a spectral approach. We analyze the convergence properties of the spectral method to approximate smooth solutions of Volterra functional integro-differential equations of neutral type. It is shown that for the neutral integro-differential equations, the spectral methods yield an exponential order of convergence.  相似文献   

5.
研究了一类具无穷时滞的中立型Volterra积分微分方程的概周期解问题.利用线性系统指数型二分性理论和泛函分析方法,得到了一些关于该方程的概周期解的存在性、唯一性与稳定性的新结果,推广了相关文献的主要结果.  相似文献   

6.
Fractional calculus is an extension of derivatives and integrals to non-integer orders and has been widely used to model scientific and engineering problems. In this paper, we describe the fractional derivative in the Caputo sense and give the second kind Chebyshev wavelet (SCW) operational matrix of fractional integration. Then based on above results we propose the SCW operational matrix method to solve a kind of nonlinear fractional-order Volterra integro-differential equations. The main characteristic of this approach is that it reduces the integro-differential equations into a nonlinear system of algebraic equations. Thus, it can simplify the problem of fractional order equation solving. The obtained numerical results indicate that the proposed method is efficient and accurate for this kind equations.  相似文献   

7.
A general formulation is constructed for Jacobi operational matrices of integration, product, and delay on an arbitrary interval. The main purpose of this study is to improve Jacobi operational matrices for solving delay or advanced integro–differential equations. Some theorems are established and utilized to reduce the computational costs. All algorithms can be used for both linear and nonlinear Fredholm and Volterra integro-differential equations with delay. An error estimator is introduced to approximate the absolute error when the exact solution of a given problem is not available. The error of the proposed method is less compared to other common methods such as the Taylor collocation, Chebyshev collocation, hybrid Euler–Taylor matrix, and Boubaker collocation methods. The reliability and efficiency of the proposed scheme are demonstrated by some numerical experiments.  相似文献   

8.
魏金侠  单锐  刘文  靳飞 《应用数学》2012,25(3):691-696
为了解决二维非线性Volterra积分微分方程的求解问题,本文给出微分变换法.利用该方法将方程中的微分部分和积分部分进行变换,这样简化了原方程,进而得到非线性代数方程组,从而将原问题转换为求解非线性代数方程组的解,使得计算更简便.文中最后数值算例说明了该方法的可行性和有效性.  相似文献   

9.
In this paper, a new method for solving arbitrary order ordinary differential equations and integro-differential equations of Fredholm and Volterra kind is presented. In the proposed method, these equations with separated boundary conditions are converted to a parametric optimization problem subject to algebraic constraints. Finally, control and state variables will be approximated by a Chebychev series. In this method, a new idea has been used, which offers us the ability of applying the mentioned method for almost all kinds of ordinary differential and integro-differential equations with different types of boundary conditions. The accuracy and efficiency of the proposed numerical technique have been illustrated by solving some test problems.  相似文献   

10.
In this paper, a finite Legendre expansion is developed to solve singularly perturbed integral equations, first order integro-differential equations of Volterra type arising in fluid dynamics and Volterra delay integro-differential equations. The error analysis is derived. Numerical results and comparisons with other methods in literature are considered.   相似文献   

11.
The aim of this paper is to study parabolic integro-differential equations of Kirchhoff type. We prove the existence and uniqueness of the solution for this problem via Galerkin method. Semidiscrete formulation for this problem is presented using conforming finite element method. As a consequence of the Ritz–Volterra projection, we derive error estimates for both semidiscrete solution and its time derivative. To find the numerical solution of this class of equations, we develop two different types of numerical schemes, which are based on backward Euler–Galerkin method and Crank–Nicolson–Galerkin method. A priori bounds and convergence estimates in spatial as well as temporal direction of the proposed schemes are established. Finally, we conclude this work by implementing some numerical experiments to confirm our theoretical results.  相似文献   

12.
In this paper we study the numerical solution of parabolic Volterra integro-differential equations on certain unbounded two-dimensional spatial domains. The method is based on the introduction of a feasible artificial boundary and the derivation of corresponding artificial (fully transparent) boundary conditions. Two examples illustrate the application and numerical performance of the method.  相似文献   

13.
In this paper we obtain the matrix Tau Method representation of a general boundary value problem for Fredholm and Volterra integro-differential equations of orderv. Some theoretical results are given that simplify the application of the Tau Method. The application of the Tau Method to the numerical solution of such problems is shown. Numerical results and details of the algorithm confirm the high accuracy and userfriendly structure of this numerical approach.  相似文献   

14.
The numerical analysis of Volterra functional integro-differential equations with vanishing delays has to overcome a number of challenges that are not encountered when solving ‘classical’ delay differential equations with non-vanishing delays. In this paper I shall describe recent results in the analysis of optimal (global and local) superconvergence orders in collocation methods for such evolutionary problems. Following a brief survey of results for equations containing Volterra integral operators with non-vanishing delays, the discussion will focus on pantograph-type Volterra integro-differential equations with (linear and nonlinear) vanishing delays. The paper concludes with a section on open problems; these include the asymptotic stability of collocation solutions uhuh on uniform meshes for pantograph-type functional equations, and the analysis of collocation methods for pantograph-type functional equations with advanced arguments.  相似文献   

15.
In this paper, the piecewise polynomial collocation methods are used for solving the fractional integro-differential equations with weakly singular kernels. We present that a suitable transformation can convert fractional integro-differential equations to one type of second kind Volterra integral equations (VIEs) with weakly singular kernels. Then we solve the VIEs by standard piecewise polynomial collocation methods. It is shown that such kinds of methods are able to yield optimal convergence rate. Finally, some numerical experiments are given to show that the numerical results are consistent with the theoretical results.  相似文献   

16.
本文涉及Runge-Kutta 法变步长求解非线性中立型泛函微分方程(NFDEs) 的稳定性和收敛性.为此, 基于Volterra 泛函微分方程Runge-Kutta 方法的B- 理论, 引入了中立型泛函微分方程Runge-Kutta 方法的EB (expanded B-theory)-稳定性和EB-收敛性概念. 之后获得了Runge-Kutta 方法变步长求解此类方程的EB - 稳定性和EB- 收敛性. 这些结果对中立型延迟微分方程和中立型延迟积分微分方程也是新的.  相似文献   

17.
The aim of this paper is to present an efficient numerical procedure for solving the two-dimensional nonlinear Volterra integro-differential equations (2-DNVIDE) by two-dimensional differential transform method (2-DDTM). The technique that we used is the differential transform method, which is based on Taylor series expansion. Using the differential transform, 2-DNVIDE can be transformed to algebraic equations, and the resulting algebraic equations are called iterative equations. New theorems for the transformation of integrals and partial differential equations are introduced and proved. The reliability and efficiency of the proposed scheme are demonstrated by some numerical experiments.  相似文献   

18.
The existence of solutions of periodic boundary value problems for second order impulsive integro-differential equations of Volterra type is investigated. By using the method of upper and lower solutions, it is proved that the problem in whi h impulses occur at fixed times has a solution. Some impulsive integro-differential inequalities related to such problem are also established.  相似文献   

19.
具有无穷时滞中立型积分微分方程的周期解   总被引:1,自引:1,他引:0       下载免费PDF全文
该文利用矩阵测度和Schauder不动点定理研究了具有无穷时滞Volterra型积分微分方程周期解的存在性、唯一性及一致稳定性, 获得了一些判别准则, 推广和改进了有关的结果.  相似文献   

20.
古振东  孙丽英 《计算数学》2017,39(4):351-362
本文考察了一类弱奇性积分微分方程的级数展开数值解法,并给出了相应的收敛性分析.理论分析结果表明,若用已知函数的谱配置多项式逼近已知函数,那么方程的数值解以谱精度逼近方程的真解.数值实验数据也验证了这一理论分析结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号