首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Employing the theories of Turing bifurcation in the partial differential equations, we investigate the dynamical behavior of a single species reaction–diffusion model with spatiotemporal delay. The linear stability and the conditions for the occurrence of Turing bifurcation in this model are obtained. Moreover, the amplitude equations which represent different spatiotemporal patterns are also obtained near the Turing bifurcation point by using multiple scale method. In Turing space, it is found that the spatiotemporal distributions of the density of this researched species have spots pattern and stripes pattern. Finally, some numerical simulations corresponding to the different spatiotemporal patterns are given to verify our theoretical analysis.  相似文献   

2.
Due to the heterogeneity of the electromagnetic field in neural networks, the diffusion phenomenon of electrons exists inevitably. In this paper, we investigate pattern formation in a reaction-diffusion neural network with leakage delay. The existence of Hopf bifurcation, as well as the necessary and sufficient conditions for Turing instability, are studied by analyzing the corresponding characteristic equation. Based on the multiple-scale analysis, amplitude equations of the model are derived, which determine the selection and competition of Turing patterns. Numerical simulations are carried out to show the possible patterns and how these patterns evolve. In some cases, the stability performance of Turing patterns is weakened by leakage delay and synaptic transmission delay.  相似文献   

3.
In this paper, we analyze the spatial pattern of a predator–prey system. We get the critical line of Hopf and Turing bifurcation in a spatial domain. In particular, the exact Turing domain is given. Also we perform a series of numerical simulations. The obtained results reveal that this system has rich dynamics, such as spotted, stripe and labyrinth patterns, which shows that it is useful to use the reaction–diffusion model to reveal the spatial dynamics in the real world.  相似文献   

4.
In this paper we introduce a conceptual model for vegetation patterns that generalizes the Klausmeier model for semi-arid ecosystems on a sloped terrain (Klausmeier in Science 284:1826–1828, 1999). Our model not only incorporates downhill flow, but also linear or nonlinear diffusion for the water component. To relate the model to observations and simulations in ecology, we first consider the onset of pattern formation through a Turing or a Turing–Hopf bifurcation. We perform a Ginzburg–Landau analysis to study the weakly nonlinear evolution of small amplitude patterns and we show that the Turing/Turing–Hopf bifurcation is supercritical under realistic circumstances. In the second part we numerically construct Busse balloons to further follow the family of stable spatially periodic (vegetation) patterns. We find that destabilization (and thus desertification) can be caused by three different mechanisms: fold, Hopf and sideband instability, and show that the Hopf instability can no longer occur when the gradient of the domain is above a certain threshold. We encounter a number of intriguing phenomena, such as a ‘Hopf dance’ and a fine structure of sideband instabilities. Finally, we conclude that there exists no decisive qualitative difference between the Busse balloons for the model with standard diffusion and the Busse balloons for the model with nonlinear diffusion.  相似文献   

5.
In this paper, we concentrate on the spatiotemporal patterns of a delayed reaction‐diffusion Holling‐Tanner model with Neumann boundary conditions. In particular, the time delay that is incorporated in the negative feedback of the predator density is considered as one of the principal factors to affect the dynamic behavior. Firstly, a global Turing bifurcation theorem for τ = 0 and a local Turing bifurcation theorem for τ > 0 are given. Then, further considering the degenerated situation, we derive the existence of Bogdanov‐Takens bifurcation and Turing‐Hopf bifurcation. The normal form method is used to study the explicit dynamics near the Turing‐Hopf singularity. It is shown that a pair of stable nonconstant steady states (stripe patterns) and a pair of stable spatially inhomogeneous periodic solutions (spot patterns) could be bifurcated from a positive equilibrium. Moreover, the Turing‐Turing‐Hopf–type spatiotemporal patterns, that is, a subharmonic phenomenon with two spatial wave numbers and one temporal frequency, are also found and explained theoretically. Our results imply that the interaction of Turing and Hopf instabilities can be considered as the simplest mechanism for the appearance of complex spatiotemporal dynamics.  相似文献   

6.
In this work we study the effect of density dependent nonlinear diffusion on pattern formation in the Lengyel–Epstein system. Via the linear stability analysis we determine both the Turing and the Hopf instability boundaries and we show how nonlinear diffusion intensifies the tendency to pattern formation; in particular, unlike the case of classical linear diffusion, the Turing instability can occur even when diffusion of the inhibitor is significantly slower than activator’s one. In the Turing pattern region we perform the WNL multiple scales analysis to derive the equations for the amplitude of the stationary pattern, both in the supercritical and in the subcritical case. Moreover, we compute the complex Ginzburg–Landau equation in the vicinity of the Hopf bifurcation point as it gives a slow spatio-temporal modulation of the phase and amplitude of the homogeneous oscillatory solution.  相似文献   

7.
In this work we investigate the process of pattern formation in a two dimensional domain for a reaction–diffusion system with nonlinear diffusion terms and the competitive Lotka–Volterra kinetics. The linear stability analysis shows that cross-diffusion, through Turing bifurcation, is the key mechanism for the formation of spatial patterns. We show that the bifurcation can be regular, degenerate non-resonant and resonant. We use multiple scales expansions to derive the amplitude equations appropriate for each case and show that the system supports patterns like rolls, squares, mixed-mode patterns, supersquares, and hexagonal patterns.  相似文献   

8.
Mussel beds are important habitats and food sources for biodiversity in coastal ecosystems. The predation of mussel on algae depends not only on the current time and location, but also on the quantity of algae at other spatial location and time. To know the impacts of such predation behavior on the dynamics of mussel beds well, we pose a reaction-diffusion mussel-algae model coupling nonlocal interaction with kernel function. By calculating the critical conditions of Hopf bifurcation and Turing bifurcation, the conditions for the generation of Turing pattern are obtained. We find that the diffusion rate and predation rate of mussels have effect on the structure and density of spatial pattern of mussels under the nonlocal interaction, and the predation rate of mussels can produce different pattern types, while the diffusion rate plays a more important role on the pattern density. Moreover, the nonlocal interaction promotes the stability of the mussel beds. These results suggest that the nonlocal interaction between mussels and algaes is one of the important mechanisms for the formation of the spatial structure of mussel beds.  相似文献   

9.
In this paper, we have investigated the phenomena of Turing pattern formation in a predator-prey model with habitat complexity in presence of cross diffusion. Using the linear stability analysis, the conditions for the existence of stationary pattern and the existence of Hopf bifurcation are obtained. It is shown analytically that the presence of cross diffusion in the system supports the formation of Turing pattern. Two parameter bifurcation analysis are done analytically and corresponding bifurcation diagrams are presented numerically. A series of simulation results are plotted for different biologically meaningful parameter values. Effects of variation of habitat complexity and the predator mortality rate and birth rate of prey on pattern formation are also reported. It is shown that cross-diffusion can lead to a wide variety of spatial and spatiotemporal pattern formation. It is found that the model exhibits spot and stripe pattern, and coexistence of both spot and strip patterns under the zero flux boundary condition. It is observed that cross-diffusion, habitat complexity, birth rate of prey and predator’s mortality rate play a significant role in the pattern formation of a distributed population system of predator-prey type.  相似文献   

10.
In this paper, we deal with the effect of the shape of herd behavior on the interaction between predator and prey. The model analysis was studied in three parts. The first, The analysis of the system in the absence of spatial diffusion and the time delay, where the local stability of the equilibrium states, the existence of Hopf bifurcation have been investigated. For the second part, the spatiotemporal dynamics introduce by self diffusion was determined, where the existence of Hopf bifurcation, Turing driven instability, Turing-Hopf bifurcation point have been proved. Further, the order of Hopf bifurcation points and regions of the stability of the non trivial equilibrium state was given. In the last part of the paper, we studied the delay effect on the stability of the non trivial equilibrium, where we proved that the delay can lead to the instability of interior equilibrium state, and also the existence of Hopf bifurcation. A numerical simulation was carried out to insure the theoretical results.  相似文献   

11.
In this paper, spatial dynamics of a diffusive predator-prey model with Leslie-Gower functional response and strong Allee effect is studied. Firstly, we obtain the critical condition of Hopf bifurcation and Turing bifurcation of the PDE model. Secondly, taking self-diffusion coefficient of the prey as bi- furcation parameter, the amplitude equations are derived by using multi-scale analysis methods. Finally, numerical simulations are carried out to verify our theoretical results. The simulations show that with the decrease of self- diffusion coefficient of the prey, the preys present three pattern structures: spot pattern, mixed pattern, and stripe pattern. We also observe the transi- tion from spot patterns to stripe patterns of the prey by changing the intrinsic growth rate of the predator. Our results reveal that both diffusion and the intrinsic growth rate play important roles in the spatial distribution of species.  相似文献   

12.
In this paper we formulate a predator mutualists which cooperate in hunting for prey in two patches in which the per capita migration rate of each species is influenced only by its own density, i.e. there is self diffusion present. Numerical studies show that at a critical value of the bifurcation parameter the system undergoes a Turing bifurcation and the self migration is an important factor that should not be ignored when pattern emerges.  相似文献   

13.
The interactions of diffusion-driven Turing instability and delay-induced Hopf bifurcation always give rise to rich spatiotemporal dynamics. In this paper, we first derive the algorithm for the normal forms associated with the Turing-Hopf bifurcation in the reaction-diffusion system with delay, which can be used to investigate the spatiotemporal dynamical classification near the Turing-Hopf bifurcation point in the parameter plane. Then, we consider a diffusive predator-prey model with weak Allee effect and delay. Through investigating the dynamics of the corresponding normal form of Turing-Hopf bifurcation induced by diffusion and delay, the spatiotemporal dynamics near this bifurcation point can be divided into six categories. Especially, stable spatially homogeneous/inhomogeneous periodic solutions and steady states, coexistence of two stable spatially inhomogeneous periodic solutions, coexistence of two stable spaially inhomogeneous steady states and the transition from one kind of spatiotemporal patterns to another are found.  相似文献   

14.
研究了一带比率依赖功能性反应的捕食-被捕食模型的空间斑图.我们得到模型发生Hopf和Turing分支的临界表达式,得到发生Turing斑图发生的精确区域,并给出了数值模拟.我们的结果表明:该模型具有丰富的动力学行为,包括点状、条状以及迷宫状斑图.这些结果说明利用反应扩散方程建模是揭示空间动力学复杂性机理的一个有效工具.  相似文献   

15.
Ratio-dependent predator-prey models have been increasingly favored by field ecologists where predator-prey interactions have to be taken into account the process of predation search. In this paper we study the conditions of the existence and stability properties of the equilibrium solutions in a reaction-diffusion model in which predator mortality is neither a constant nor an unbounded function, but it is increasing with the predator abundance. We show that analytically at a certain critical value a diffusion driven (Turing type) instability occurs, i.e. the stationary solution stays stable with respect to the kinetic system (the system without diffusion). We also show that the stationary solution becomes unstable with respect to the system with diffusion and that Turing bifurcation takes place: a spatially non-homogenous (non-constant) solution (structure or pattern) arises. A numerical scheme that preserve the positivity of the numerical solutions and the boundedness of prey solution will be presented. Numerical examples are also included.  相似文献   

16.
In this paper we explore how the two mechanisms, Turing instability and Hopf bifurcation, interact to determine the formation of spatial patterns in a ratio-dependent prey–predator model with discrete time delay. We conduct both rigorous analysis and extensive numerical simulations. Results show that four types of patterns, cold spot, labyrinthine, chaotic as well as mixture of spots and labyrinthine can be observed with and without time delay. However, in the absence of time delay, the two aforementioned mechanisms have a significant impact on the emergence of spatial patterns, whereas only Hopf bifurcation threshold is derived by considering the discrete time delay as the bifurcation parameter. Moreover, time delay promotes the emergence of spatial patterns via spatio-temporal Hopf bifurcation compared to the non-delayed counterpart, implying the destabilizing role of time delay. In addition, the destabilizing role is prominent when the magnitude of time delay and the ratio of diffusivity are comparatively large.  相似文献   

17.
This paper treats the conditions for the existence and stability properties of stationary solutions of reaction–diffusion equations subject to Neumann boundary data. Hence, we assume that there are two substances in a two-dimensional bounded spatial domain where they are diffusing according to Fick's law: the velocity of the flow of diffusing substance is directed opposite to the (spatial) gradient of the density and is proportional to its modulus, but the spatial flow of each substance is influenced not only by its own but also by the other one's density (cross diffusion). The domains in which the substances are diffusing are of three type: a regular hexagon, a rectangle and an isosceles rectangular triangle. It will be assumed that there is no migration across the boundary of these domains. Considering one of the relevant features of the domains as a bifurcation parameter it will be shown that at a certain critical value a diffusion driven (Turing type) instability occurs, i.e. the stationary solution stays stable with respect to the kinetic system (the system without diffusion) but becomes unstable with respect to the system with diffusion and that Turing bifurcation takes place: a spatially non-homogenous (non-constant) solution (structure or pattern) arises.  相似文献   

18.
In this paper, we study a delayed diffusive predator-prey model with fear effect and Holling II functional response. The stability of the positive equilibrium is investigated. We find that time delay can destabilize the stable equilibrium and induce Hopf bifurcation. Diffusion may lead to Turing instability and inhomogeneous periodic solutions. Through the theory of center manifold and normal form, some detailed formulas for determining the of Hopf bifurcation are presented. Some numerical simulations are also provided.  相似文献   

19.
Fear of predators is an important drive for predator–prey interactions, which increases survival probability but cost the overall population size of the prey. In this paper, we have extended our previous work spatiotemporal dynamics of predator–prey interactions with fear effect by introducing the cross-diffusion. The conditions for cross-diffusion-driven instability are obtained using the linear stability analysis. The standard multiple scale analysis is used to derive the amplitude equations for the excited modes near Turing bifurcation threshold by taking the cross-diffusion coefficient as a bifurcation parameter. From the stability analysis of amplitude equations, the conditions for the emergence of various ecologically realistic Turing patterns such as spot, stripe, and mixture of spots and stripes are identified. Analytical results are verified with the help of numerical simulations. Turing bifurcation diagrams are plotted taking diffusion coefficients as control parameters. The effect of the cross-diffusion coefficients on the homogeneous steady state and pattern structures of the self-diffusive model is illustrated using the simulation techniques. It is also observed that the level of fear has stabilizing effect on the cross-diffusion induced instability and spot patterns change to stripe, then a mixture of spots and stripes and finally to the labyrinthine type of patterns with an increase in the level of fear.  相似文献   

20.
Turing–Hopf instabilities for reaction-diffusion systems provide spatially inhomogeneous time-periodic patterns of chemical concentrations. In this paper we suggest a way for deriving asymptotic expansions to the limit cycle solutions due to a Hopf bifurcation in two-dimensional reaction systems and we use them to build convenient normal modes for the analysis of Turing instabilities of the limit cycle. They extend the Fourier modes for the steady state in the classical Turing approach, as they include time-periodic fluctuations induced by the limit cycle. Diffusive instabilities can be properly considered because of the non-catastrophic loss of stability that the steady state shows while the limit cycle appears. Moreover, we shall see that instabilities may appear even though the diffusion coefficients are equal. The obtained normal modes suggest that there are two possible ways, one weak and the other strong, in which the limit cycle generates oscillatory Turing instabilities near a Turing–Hopf bifurcation point. In the first case slight oscillations superpose over a dominant steady inhomogeneous pattern. In the second, the unstable modes show an intermittent switching between complementary spatial patterns, producing the effect known as twinkling patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号