首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, we study adaptive finite element discretization schemes for an optimal control problem governed by elliptic PDE with an integral constraint for the state. We derive the equivalent a posteriori error estimator for the finite element approximation, which particularly suits adaptive multi-meshes to capture different singularities of the control and the state. Numerical examples are presented to demonstrate the efficiency of a posteriori error estimator and to confirm the theoretical results.  相似文献   

2.
In this paper, we derive an a posteriori error estimator of gradient recovery type for a model optimal control problem. We show that the a posteriori error estimator is equivalent to the discretization error in a norm of energy type on general meshes. Furthermore, when the solution of the control problem is smooth and the meshes are uniform, it is shown to be asymptotically exact.  相似文献   

3.
Winnifried Wollner 《PAMM》2008,8(1):10873-10874
We are concerned with an interior penalty method for an optimal control problem with an elliptic PDE constraint and additional pointwise constraints on the gradient of the state variable. We will derive an estimator that gives qualitative information about the error in the cost functional due to the interior penalty parameter and for the discretization of the PDE. These can be used to balance the error contributions of both types of errors. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Wei Gong  Michael Hinze  Zhaojie Zhou 《PAMM》2014,14(1):877-878
In this paper we investigate a space-time finite element approximation of parabolic optimal control problems. The first order optimality conditions are transformed into an elliptic equation of fourth order in space and second order in time involving only the state or the adjoint state in the space-time domain. We derive a priori and a posteriori error estimates for the time discretization of the state and the adjoint state. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We deal with a posteriori error control of discontinuous Galerkin approximations for linear boundary value problems. The computational error is estimated in the framework of the Dual Weighted Residual method (DWR) for goal-oriented error estimation which requires to solve an additional (adjoint) problem. We focus on the control of the algebraic errors arising from iterative solutions of algebraic systems corresponding to both the primal and adjoint problems. Moreover, we present two different reconstruction techniques allowing an efficient evaluation of the error estimators. Finally, we propose a complex algorithm which controls discretization and algebraic errors and drives the adaptation of the mesh in the close to optimal manner with respect to the given quantity of interest.  相似文献   

6.
We propose a characteristic finite element discretization of evolutionary type convection-diffusion optimal control problems. Nondivergence-free velocity fields and bilateral inequality control constraints are handled. Then some residual type a posteriori error estimates are analyzed for the approximations of the control, the state, and the adjoint state. Based on the derived error estimators, we use them as error indicators in developing efficient multi-set adaptive meshes characteristic finite element algorithm for such optimal control problems. Finally, one numerical example is given to check the feasibility and validity of multi-set adaptive meshes refinements.  相似文献   

7.
Summary We present an a posteriori error estimator for the non-conforming Crouzeix-Raviart discretization of the Stokes equations which is based on the local evaluation of residuals with respect to the strong form of the differential equation. The error estimator yields global upper and local lower bounds for the error of the finite element solution. It can easily be generalized to the stationary, incompressible Navier-Stokes equations and to other non-conforming finite element methods. Numerical examples show the efficiency of the proposed error estimator.  相似文献   

8.
In optimal control problems with nonlinear time-dependent 3D PDEs, the computation of the reduced gradient by adjoint methods requires one solve of the state equation forward in time, and one backward solve of the adjoint equation. Since the state enters into the adjoint equation, the storage of a 4D discretization is necessary. We propose a lossy compression algorithm using a cheap predictor for the state data, with additional entropy coding of prediction errors. Analytical and numerical results indicate that compression factors around 30 can be obtained without exceeding the FE discretization error. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We derive two optimal a posteriori error estimators for an implicit fully discrete approximation to the solutions of linear integro‐differential equations of the parabolic type. A continuous, piecewise linear finite element space is used for the space discretization and the time discretization is based on an implicit backward Euler method. The a posteriori error indicator corresponding to space discretization is derived using the anisotropic interpolation estimates in conjunction with a Zienkiewicz‐Zhu error estimator to approach the error gradient. The error due to time discretization is derived using continuous, piecewise linear polynomial in time. We use the linear approximation of the Volterra integral term to estimate the quadrature error in the second estimator. Numerical experiments are performed on the isotropic mesh to validate the derived results.© 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1309–1330, 2016  相似文献   

10.
We consider an interior point method in function space for PDE constrained optimal control problems with state constraints. Our emphasis is on the construction and analysis of an algorithm that integrates a Newton path-following method with adaptive grid refinement. This is done in the framework of inexact Newton methods in function space, where the discretization error of each Newton step is controlled by adaptive grid refinement in the innermost loop. This allows to perform most of the required Newton steps on coarse grids, such that the overall computational time is dominated by the last few steps. For this purpose we propose an a-posteriori error estimator for a problem suited norm.  相似文献   

11.
We construct a hierarchical a posteriori error estimator for a stabilized finite element discretization of convection‐diffusion equations with height Péclet number. The error estimator is derived without the saturation assumption and without any comparison with the classical residual estimator. Besides, it is robust, such that the equivalence between the norm of the exact error and the error estimator is independent of the meshsize or the diffusivity parameter. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2012  相似文献   

12.
We study the numerical approximation of Neumann boundary optimal control problems governed by a class of quasilinear elliptic equations. The coefficients of the main part of the operator depend on the state function, as a consequence the state equation is not monotone. We prove that strict local minima of the control problem can be approximated uniformly by local minima of discrete control problems and we also get an estimate of the rate of this convergence. One of the main issues in this study is the error analysis of the discretization of the state and adjoint state equations. Some difficulties arise due to the lack of uniqueness of solution of the discrete equations. The theoretical results are illustrated by numerical tests.  相似文献   

13.
This article discusses a priori and a posteriori error estimates of discontinuous Galerkin finite element method for optimal control problem governed by the transport equation. We use variational discretization concept to discretize the control variable and discontinuous piecewise linear finite elements to approximate the state and costate variable. Based on the error estimates of discontinuous Galerkin finite element method for the transport equation, we get a priori and a posteriori error estimates for the transport equation optimal control problem. Finally, two numerical experiments are carried out to confirm the theoretical analysis.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1493–1512, 2017  相似文献   

14.
In this paper we are concerned with a posteriori error estimates for the solution of some state constraint optimization problem subject to an elliptic PDE. The solution is obtained using an interior point method combined with a finite element method for the discretization of the problem. We will derive separate estimates for the error in the cost functional introduced by the interior point parameter and by the discretization of the problem. Finally we show numerical examples to illustrate the findings for pointwise state constraints and pointwise constraints on the gradient of the state.  相似文献   

15.
We will show that some of the superconvergence properties for the mixed finite element method for elliptic problems are preserved in the mixed semi-discretizations for a diffusion equation and for a Maxwell equation in two space dimensions. With the help of mixed elliptic projection we will present estimates global and pointwise in time. The results for the Maxwell equations form an extension of existing results. For both problems, our results imply that post-processing and a posteriori error estimation for the error in the space discretization can be performed in the same way as for the underlying elliptic problem.  相似文献   

16.
We consider Poisson's equation with a finite number of weighted Dirac masses as a source term, together with its discretization by means of conforming finite elements. For the error in fractional Sobolev spaces, we propose residual‐type a posteriori estimators with a specifically tailored oscillation and show that, on two‐dimensional polygonal domains, they are reliable and locally efficient. In numerical tests, their use in an adaptive algorithm leads to optimal error decay rates. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1018–1042, 2017  相似文献   

17.
In this paper, we study a posteriori error estimates of the upwind symmetric interior penalty Galerkin (SIPG) method for the control constrained optimal control problems governed by linear diffusion–convection–reaction partial differential equations. Residual based error estimators are used for the state, the adjoint and the control. An adaptive mesh refinement indicated by a posteriori error estimates is applied. Numerical examples are presented for convection dominated problems to illustrate the theoretical findings and the effectiveness of the adaptivity.  相似文献   

18.
This paper is concerned with recovery type a posteriori error estimates of fully discrete finite element approximation for general convex parabolic optimal control problems with pointwise control constraints. The time discretization is based on the backward Euler method. The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions. We derive the superconvergence properties of finite element solutions. By using the superconvergence results, we obtain recovery type a posteriori error estimates. Some numerical examples are presented to verify the theoretical results.  相似文献   

19.
In this paper we shall analyze a class of a posteriori error indicators for an electromagnetic scattering problem for Maxwell's equations in the presence of a bounded, inhomogeneous and anisotropic scatterer. Problems of this type arise when computing the interaction of electromagnetic radiation with biological tissue. We briefly recall existence and uniqueness theory associated with this problem. Then we show how a posteriori error indicators can be derived using an adjoint equation approach. The error indicators use both the jump in normal and tangential components of the field across faces in the mesh.  相似文献   

20.
This paper presents an a posteriori error analysis for the linear finite element approximation of the Signorini problem in two space dimensions. A posteriori estimations of residual type are defined and upper and lower bounds of the discretization error are obtained. We perform several numerical experiments in order to compare the convergence of the terms in the error estimator with the discretization error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号