首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 466 毫秒
1.
2.
The understanding and optimization of protein-ligand interactions are instrumental to medicinal chemists investigating potential drug candidates. Over the past couple of decades, many powerful standalone tools for computer-aided drug discovery have been developed in academia providing insight into protein-ligand interactions. As programs are developed by various research groups, a consistent user-friendly graphical working environment combining computational techniques such as docking, scoring, molecular dynamics simulations, and free energy calculations is needed. Utilizing PyMOL we have developed such a graphical user interface incorporating individual academic packages designed for protein preparation (AMBER package and Reduce), molecular mechanics applications (AMBER package), and docking and scoring (AutoDock Vina and SLIDE). In addition to amassing several computational tools under one interface, the computational platform also provides a user-friendly combination of different programs. For example, utilizing a molecular dynamics (MD) simulation performed with AMBER as input for ensemble docking with AutoDock Vina. The overarching goal of this work was to provide a computational platform that facilitates medicinal chemists, many who are not experts in computational methodologies, to utilize several common computational techniques germane to drug discovery. Furthermore, our software is open source and is aimed to initiate collaborative efforts among computational researchers to combine other open source computational methods under a single, easily understandable graphical user interface.  相似文献   

3.
There is considerable interest in developing methodologies for the accurate evaluation of free energies, especially in the context of biomolecular simulations. Here, we report on a reexamination of the recently developed metadynamics method, which is explicitly designed to probe "rare events" and areas of phase space that are typically difficult to access with a molecular dynamics simulation. Specifically, we show that the accuracy of the free energy landscape calculated with the metadynamics method may be considerably improved when combined with umbrella sampling techniques. As test cases, we have studied the folding free energy landscape of two prototypical peptides: Ace-(Gly)(2)-Pro-(Gly)(3)-Nme in vacuo and trialanine solvated by both implicit and explicit water. The method has been implemented in the classical biomolecular code AMBER and is to be distributed in the next scheduled release of the code.  相似文献   

4.
We report the synthesis of methyl alpha-D-glycero-D-idoseptanoside (1) and methyl beta-D-glycero-D-guloseptanoside (2) and the characterization of their preferred solution conformations by computational chemistry and (1)H NMR (3)J(H,H) coupling constant analysis. Central to the synthetic approach was the epoxidation of glucose-derived oxepine 3 using DMDO. Nucleophilic attack on the resulting 1,2-anhydroseptanose using NaOCH(3) in CH(3)OH followed by deprotection provided the 1,2-trans diastereomers 1 and 2. The computational approach for determining the preferred low energy septanose conformations began with a pseudo Monte Carlo search for each isomer using minimization with the AMBER force field. Single-point energy calculations (HF/6-31G *and B3LYP/6-31+G**) as well as full geometry optimizations in a model for aqueous solvent were then conducted using the conformers within 5 kcal/mol of the AMBER global minimum. Calculated (3)J(H,H) values, based on a Boltzmann distribution of the computed low energy conformers, were compared to experimental (3)J(H,H) values from (1)H NMR coupling constant analyses. The correlation between calculated and observed values suggest that septanose carbohydrates are not so flexible and should generally prefer one twist-chair (TC) conformation.  相似文献   

5.
Alchemical free energy (AFE) calculations based on molecular dynamics (MD) simulations are key tools in both improving our understanding of a wide variety of biological processes and accelerating the design and optimization of therapeutics for numerous diseases. Computing power and theory have, however, long been insufficient to enable AFE calculations to be routinely applied in early stage drug discovery. One of the major difficulties in performing AFE calculations is the length of time required for calculations to converge to an ensemble average. CPU implementations of MD‐based free energy algorithms can effectively only reach tens of nanoseconds per day for systems on the order of 50,000 atoms, even running on massively parallel supercomputers. Therefore, converged free energy calculations on large numbers of potential lead compounds are often untenable, preventing researchers from gaining crucial insight into molecular recognition, potential druggability and other crucial areas of interest. Graphics Processing Units (GPUs) can help address this. We present here a seamless GPU implementation, within the PMEMD module of the AMBER molecular dynamics package, of thermodynamic integration (TI) capable of reaching speeds of >140 ns/day for a 44,907‐atom system, with accuracy equivalent to the existing CPU implementation in AMBER. The implementation described here is currently part of the AMBER 18 beta code and will be an integral part of the upcoming version 18 release of AMBER. © 2018 Wiley Periodicals, Inc.  相似文献   

6.
Molecular dynamics simulations of the melting of 1,3,3-trinitroazetidine   总被引:1,自引:0,他引:1  
Physical properties of condensed-phase 1,3,3-trinitroazetidine (TNAZ) have been computed with molecular dynamics (MD) and a nonreactive, fully flexible force field formulated by combining the intramolecular interactions obtained from the Generalized AMBER Force Field and the rigid-molecule force field developed by Sorescu-Rice-Thompson [J. Phys. Chem. B 1997, 101, 798] (AMBER-SRT). The results are compared with MD calculations, using the AMBER force field. The predicted densities of crystalline TNAZ from both force fields are about 10% lower than the experimental value. The calculated thermodynamic melting point at 1 atm from the AMBER-SRT force field is 390 K, in good agreement with the measured value of 374 K, while the AMBER force field predicts a thermodynamic melting point of 462 K. The lattice parameters and the molecular and crystal structures calculated with the AMBER-SRT force field are in excellent agreement with experiment. Simulations with the AMBER-SRT force field were also used to generate the isotherm of TNAZ up to 4 GPa and the bulk modulus and its pressure derivative.  相似文献   

7.
A force field for monosaccharides that can be extended to (1 → 4) linked polysaccharides has been developed for the AMBER potential function. The resulting force field is consistent with the existing AMBER force field for proteins and nucleic acids. Modifications to the standard AMBER OH force constant and to the Lennard-Jones parameters were made. Furthermore, a 10–12 nonbonded term was included between the hydroxyl hydrogen of the saccharide and the water oxygen (TIP3P, SPC/E, etc.) to reproduce better the water–saccharide intermolecular distances. STO-3G electrostatic potential (ESP) charges were used to represent the electrostatic interactions between the saccharide and its surrounding environment. To obtain charges for polysaccharides, a scheme was developed to piece together saccharide residues through 1 → 4 connections while still retaining a net neutral charge on the molecule as a whole. Free energy perturbation (FEP) simulations of D -glucose and D -mannose in water were performed to test the resulting force field. The FEP simulations demonstrate that AMBER overestimates intramolecular interaction energies, suggesting that further improvements are needed in this part of the force field. To test further the reliability of the parameters, a molecular dynamics (MD) simulation of α-D -glucose in water was also performed. The MD simulation was able to produce structural and conformational results that are in accord with experimental evidence and previous theoretical results. Finally, a relaxed conformational map of β-maltose was assembled and it was found that the present force field is consistent with available theoretical and experimental results. © 1994 by John Wiley & Sons, Inc.  相似文献   

8.
We present the theoretical evaluation of new AMBER force field parameters for 12 copper-based nucleases with bis(2-pyridylmethyl) amine, 2,2′-dipyridylamine, imidazole, N,N-bis(2-benzimidazolylmethyl) amine and their derivative ligands based on first-principles electronic structure calculations at the B3LYP level of theory. A three-point approach was developed to accurately and efficiently evaluate the force field parameters for the copper-based nucleases with the ligands. The protocol of RESP atomic charges has been used to calculate the atomic charge distributions of the studied copper-based nucleases. The evaluated force field parameters and RESP atomic charges have been successfully applied in the testing molecular mechanics calculations and molecular dynamics simulations on the nucleases and the nuclease–DNA complexes, respectively. It has been demonstrated that the developed force field parameters and atomic charges can consistently reproduce molecular geometries and conformations in the available X-ray crystal structures and can reasonably predict the interaction properties of the nucleases with DNA. The developed force field parameters in this work provide an extension of the AMBER force field for its application to computational modeling and simulations of the copper-based artificial nucleases associated with DNA.  相似文献   

9.
We present a set of force field (FF) parameters compatible with the AMBER03 FF to describe five cofactors in photosystem II (PSII) of oxygenic photosynthetic organisms: plastoquinone‐9 (three redox forms), chlorophyll‐a, pheophytin‐a, heme‐b, and β‐carotene. The development of a reliable FF for these cofactors is an essential step for performing molecular dynamics simulations of PSII. Such simulations are important for the calculation of absorption spectrum and the further investigation of the electron and energy transfer processes. We have derived parameters for partial charges, bonds, angles, and dihedral‐angles from solid theoretical models using systematic quantum mechanics (QM) calculations. We have shown that the developed FF parameters are in good agreement with both ab initio QM and experimental structural data in small molecule crystals as well as protein complexes. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
11.
For applying to a number of theoretical methodologies based on an ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics method connecting AMBER9 with GAUSSIAN03, we have developed an AMBER-GAUSSIAN interface (AG-IF), which can be one of the simplest architectures. In the AG-IF, only a few subroutines addition is necessary to retrieve the QM/MM energy and forces, obtained by GAUSSIAN, for solving a set of Newtonian equations of motion in AMBER. It is, therefore, easy to be modified for individual applications since AG-IF utilizes most of those functions originally equipped not only in AMBER but also in GAUSSIAN. In the present minimal implementation, only AMBER is modified, whereas GAUSSIAN is left unchanged. Moreover, a different method of calculating electrostatic forces of MM atoms interacting with QM region is proposed. Using the AG-IF, we also demonstrate three examples of application: (i) the QM versus MM comparison in the radial distribution function, (ii) the free energy gradient method, and (iii) the charge from interaction energy and forces.  相似文献   

12.
Using quantum chemistry plus ab initio molecular dynamics and classical molecular dynamics methods, we address the relationship between molecular conformation and the biomedical function of arylamide polymers. Specifically, we have developed new torsional parameters for a class of these polymers and applied them in a study of the interaction between a representative arylamide and one of its biomedical targets, the anticoagulant drug heparin. Our main finding is that the torsional barrier of a C(aromatic)-C(carbonyl) bond increases significantly upon addition of an o-OCH2CH2NH3+ substituent on the benzene ring. Our molecular dynamics studies that are based on the original general AMBER force field (GAFF) and GAFF modified to include our newly developed torsional parameters show that the binding mechanism between the arylamide and heparin is very sensitive to the choice of torsional potentials. Ab initio molecular dynamics simulation of the arylamide independently confirms the degree of flexibility we obtain by classical molecular dynamics when newly developed torsional potentials are used.  相似文献   

13.
Different biomolecular force fields (OPLS‐AA, AMBER03, and GROMOS96) in conjunction with SPC, SPC/E and TIP3P water models are assessed for molecular dynamics simulations in a tetragonal lysozyme crystal. The root mean square deviations for the Ca atoms of lysozymes are about 0.1 to 0.2 nm from OPLS‐AA and AMBER03, smaller than 0.4 nm from GROMOS96. All force fields exhibit similar pattern in B‐factors, whereas OPLS‐AA and AMBER03 accurately reproduce experimental measurements. Despite slight variations, the primary secondary structures are well conserved using different force fields. Water diffusion in the crystal is approximately ten‐fold slower than in bulk phase. The directional and average water diffusivities from OPLS‐AA and AMBER03 along with SPC/E model match fairly well with experimental data. Compared to GROMOS96, OPLS‐AA and AMBER03 predict larger hydrophilic solvent‐accessible surface area of lysozyme, more hydrogen bonds between lysozyme and water, and higher percentage of water in hydration shell. SPC, SPC/E and TIP3P water models have similar performance in most energetic and structural properties, but SPC/E outperforms in water diffusion. While all force fields overestimate the mobility and electrical conductivity of NaCl, a combination of OPLS‐AA for lysozyme and the Kirkwood‐Buff model for ions is superior to others. As attributed to the steric restraints and surface interactions, the mobility and conductivity in the crystal are reduced by one to two orders of magnitude from aqueous solution. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

14.
The accuracy of three force fields for predicting the physical properties of dimethylnitramine (DMNA) has been investigated by using molecular dynamics simulations. The Sorescu, Rice, and Thompson (SRT) (J. Phys. Chem. B 1997, 101, 798) rigid-molecule, flexible generalized AMBER (J. Comput. Chem. 2004, 25, 1157), and Smith et al. flexible force fields (J. Phys. Chem. B 1999, 103, 705) were tested. The density, lattice parameters, isotherm, and melting point of DMNA are calculated using classical molecular dynamics. Except for the melting point, the predictions of the three force fields are in reasonable agreement with experimental values. The calculated thermodynamic melting points (Tmp) for the SRT, AMBER, and Smith et al. force fields are 380, 360, and 260 K, respectively. The experimental value is 331 K. Modifications of the torsional barriers in the AMBER force field resulted in Tmp = 346 K, in good agreement with the experimental value of 331 K. The calculated lattice parameters and bulk modulus are also improved with the modifications of the AMBER potential. The results indicate that, although not sufficiently accurate without modifications, the general force fields such as AMBER provide the basis for developing force fields that correctly predict the physical properties of nitramines.  相似文献   

15.
16.
An antioxidative liposome catalysis that mimics both superoxide dismutase (SOD) and peroxidase (POD) activities has been developed by using the liposomes modified with lipophilic Mn-(5,10,15,20-tetrakis[1-hexadecylpyridium-4-yl]-21H,23H-porphyrin) (Mn-HPyP). The SOD- and POD-like activities of the Mn-HPyP-modified liposome were first investigated by varying the type of phospholipid, such as 1,2-distearyl-sn-glycero-3-phosphocholine (DSPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC). Higher SOD-like activity was obtained in the case of DLPC and DMPC liposomes, in which the ligands were well-dispersed on the membrane in the liquid crystalline phase. The POD-like activity was maximal in the case of DMPC liposome, in which the Mn-HPyP complex was appropriately clustered on the membrane in the gel phase. On the basis of the above results, the co-induction of the SOD and POD activities to eliminate the superoxide and also hydrogen peroxide as a one-pot reaction was finally performed by using the Mn-HPyP-modified DMPC liposome, resulting in an increase in the efficiency of the elimination of both superoxide and hydrogen peroxide.  相似文献   

17.
The rotational isomeric states (RIS) of glycerol at infinite dilution have been characterized in the aqueous phase via a 1 micros conventional molecular dynamics (MD) simulation, a 40 ns enhanced sampling replica exchange molecular dynamics (REMD) simulation, and a reevaluation of the experimental NMR data. The MD and REMD simulations employed the GLYCAM06/AMBER force field with explicit treatment of solvation. The shorter time scale of the REMD sampling method gave rise to RIS and theoretical scalar 3J(HH) coupling constants that were comparable to those from the much longer traditional MD simulation. The 3J(HH) coupling constants computed from the MD methods were in excellent agreement with those observed experimentally. Despite the agreement between the computed and the experimental J-values, there were variations between the rotamer populations computed directly from the MD data and those derived from the experimental NMR data. The experimentally derived populations were determined utilizing limiting J-values from an analysis of NMR data from substituted ethane molecules and may not be completely appropriate for application in more complex molecules, such as glycerol. Here, new limiting J-values have been derived via a combined MD and quantum mechanical approach and were used to decompose the experimental 3J(HH) coupling constants into population distributions for the glycerol RIS.  相似文献   

18.
The molecular structure and conformational behavior of 3-cyclopropyl-1,2-dimethyldiaziridine have been for the first time experimentally studied by gas-phase electron diffraction and quantum chemical calculations. The two most stable conformers at 298 K possess anti and gauche mutual ring orientation (with prevalence of the anti conformer) whereas only one anti conformer is observed in solution. The determined structural parameters of gaseous 3-cyclopropyl-1,2-dimethyldiaziridine have been compared with those for 3,3-bidiaziridine structural analogues in the crystal phase. The simple and convenient procedure for the synthesis of 3-cyclopropyl-1,2-dimethyldiaziridine comprising cyclopropane and diaziridine rings in one molecule was developed. The standard enthalpy of formation of 3-cyclopropyl-1,2-dimethyldiaziridine in the gas phase was calculated using Gaussian-4 theory, yielding value of 281.9?±?5.0 kJ/mol.  相似文献   

19.
We have implemented a portable parallel version of the macromolecular modeling package AMBER4. The message passing paradigm was used. All message passing constructs are compliant with the Message Passing Interface (MPI) standard. The molecular dynamics/minimization module MINMD and the free-energy perturbation module Gibbs have been implemented in parallel on a number of machines, including a Cray T3D, an IBM SP1/SP2, and a collection of networked workstations. In addition, the code has been tested with an MPI implementation from Argonne National Laboratories/Mississippi State University which runs on many parallel machines. The goal of this work is to decrease the amount of time required to perform molecular dynamics simulations. Performance results for a lipid bilayer molecular dynamics simulation on a Cray T3D, an IBM SP1/SP2, and a Cray C90 are compared. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
In this work we describe the development of parameters for In(III) and Cu(II) for the AMBER force field as found in the modeling package MacroModel. These parameters were developed using automated procedures from a combination of crystallographic structures and ab initio calculations. The new parameters were added in the form of AMBER substructures containing specific metal-ligand parameters to the existing force field. These new parameters have produced results in good agreement with experiment without requiring additional changes to the existing AMBER parameters. These parameters were then utilized to examine the conformational effects caused by the conjugation of InDTPA (DTPA = diethylenetriaminepentaacetic acid) and CuDOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) to the cyclic octapeptide octreotide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号