首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmonic waveguides and conventional dielectric waveguides have favorable characteristics in photonic integrated circuits. Typically, plasmonic waveguides can provide subwavelength mode confinement, as shown by their small mode area, whereas conventional dielectric waveguides guide light with low loss, as shown by their long propagation length. However, the simultaneous achievement of subwavelength mode confinement and low-loss propagation remains limited. In this paper, we propose a novel design of an alldielectric bowtie waveguide, which simultaneously exhibits both subwavelength mode confinement and theoretically lossless propagation. Contrary to traditional dielectric waveguides, where the guidance of light is based on total internal reflection, the principle of the all-dielectric bowtie waveguide is based on the combined use of the conservation of the normal component of the electric displacement and the tangential component of the electric field, such that it can achieve a mode area comparable to its plasmonic counterparts. The mode distribution in the all-dielectric bowtie waveguide can be precisely controlled by manipulating the geometric design. Our work shows that it is possible to achieve extreme light confinement by using dielectric instead of lossy metals.  相似文献   

2.
A new type of THz waveguides, which employs a solid polyethylene rod as the core and polyethylene tubes in a periodic array of square lattice as the cladding, is proposed. Optical properties of this new THz waveguide, especially in dispersion, confinement loss and single mode property, are investigated in detail with the plane wave expansion method and the beam propagation method. Numerical results demonstrate that the new THz waveguide can reach not only low dispersion but also low confinement loss at single mode propagation. Therefore, the square lattice structure is a better candidate as THz waveguides than the triangular ones.  相似文献   

3.
岳嵩  李智  陈建军  龚旗煌 《物理学报》2011,60(9):94214-094214
提出了一种基于耦合介质纳米线的深亚波长局域波导,通过两根紧邻的高折射率介质纳米线的耦合,该波导可以将光场有效束缚在纳米线之间的低折射率纳米缝隙中. 计算模拟的结果表明,该波导的有效模场面积达到Λ20/200,比单根纳米线波导小一个数量级,这种深亚波长的模场束缚能力可以与表面等离激元混合波导相比拟. 计算模拟的结果还表明,纳米线可能带有的低折射率氧化膜、低折射率衬底的存在、以及纳米线间尺寸存在的一定差异对于该波导结构的实际应用都不会产生很大 关键词: 介质波导 亚波长局域 表面等离激元波导 纳米线  相似文献   

4.
Surface plasmon propagating modes supported by metal/dielectric interfaces in various configurations can be used for radiation guiding similarly to conventional dielectric waveguides. Plasmonic waveguides offer two attractive features: subdiffraction mode confinement and the presence of conducting elements at the mode‐field maximum. The first feature can be exploited to realize ultrahigh density of nanophotonics components, whereas the second feature enables the development of dynamic components controlling the plasmon propagation with ultralow signals, minimizing heat dissipation in switching elements. While the first feature is yet to be brought close to the domain of practical applications because of high propagation losses, the second one is already being investigated for bringing down power requirements in optical communication systems. In this review, the latest application‐oriented research on radiation modulation and routing using thermo‐optic dielectric‐loaded plasmonic waveguide components integrated with silicon‐based photonic waveguides is overviewed. Their employment under conditions of real telecommunications is addressed, highlighting challenges and perspectives.  相似文献   

5.
Optical confinement in slot waveguides with angled sidewalls is studied. Improved vertical optical confinement is observed. Different mode solvers are compared in the modeling of slot waveguides with varying sidewall angles. The finite element method was found best suitable for this task. The effect of the slot waveguide geometry on the vertical optical confinement is studied. The reduced effective mode area is beneficial in all-optical applications due to enhancement of nonlinear effects in the waveguide.  相似文献   

6.
We introduce a method for optical characterization of hollow-core optical waveguides. Radiation pressure exerted by the waveguide modes on dielectric microspheres is used to analyze salient properties such as propagation loss and waveguide mode profiles. These quantities were measured for quasi-single-mode and multimode propagation in on-chip liquid-filled hollow-core antiresonant reflecting optical waveguides. Excellent agreement with analytical and numerical models is found, demonstrating that optically induced particle transport provides a simple, inexpensive, and nondestructive alternative to other characterization methods.  相似文献   

7.
王文慧  张孬 《物理学报》2018,67(24):247302-247302
金属纳米结构的表面等离激元可以突破光学衍射极限,为光子器件的微型化和集成光学芯片的实现奠定基础.基于表面等离激元的各种基本光学元件已经研制出来.然而,由于金属结构的固有欧姆损耗以及向衬底的辐射损耗等,表面等离激元的传输能量损耗较大,极大地制约了其在纳米光子器件和回路中的应用.研究能量损耗的影响因素以及如何有效降低能量损耗对未来光子器件的实际应用具有重要意义.本文从纳米线表面等离激元的基本模式出发,介绍了它在不同条件下的场分布和传输特性,在此基础上着重讨论纳米线表面等离激元传输损耗的影响因素和测量方法以及目前常用的降低传输损耗的思路.最后给出总结以及如何进一步降低能量损耗方法的展望.表面等离激元能量损耗的相关研究对于纳米光子器件的设计和集成光子回路的构建有着重要作用.  相似文献   

8.
Advent of slot waveguide structures had opened a new era where light can be confined in low index slot guarded by high index slabs. Already in use SOI slot waveguides (contrast ratio is 2.42) have two distinct properties over the conventional waveguides, i.e. high E-field amplitude, optical power, optical intensity in low index materials, and strong E-field confinement localized to nanometer-size low index regions. We hereby propose a low refractive index contrast ratio slot waveguide structure (ratio is 1.18) comprising of commercially available glass material. Novelty lies in showing high E-field amplitude, optical power, optical intensity, and strong E-field confinement in low index slot regions despite of lowest ever reported contrast ratio. A systematic numerical study on the higher order dispersion characteristics of the widely studied SOI-based slot structure and of our proposed low refractive index contrast slot structure is carried out. It has been demonstrated that low refractive index contrast ratio slot optical waveguide GVD properties are quite different than SOI slot optical waveguide. The less normal dispersion existing in this kind of waveguide could have an impact on their applications in various nonlinear or linear applications.  相似文献   

9.
Y He  S He  X Yang 《Optics letters》2012,37(14):2907-2909
Nanoscale slot waveguides of hyperbolic metamaterials are proposed and demonstrated for achieving large optical field enhancement. The dependence of the enhanced electric field within the air slot on waveguide mode coupling and permittivity tensors of hyperbolic metamaterials is analyzed both numerically and analytically. Optical intensity in the metamaterial slot waveguide can be more than 25 times stronger than that in a conventional silicon slot waveguide, due to tight optical mode confinement enabled by the ultrahigh refractive indices supported in hyperbolic metamaterials. The electric field enhancement effects are also verified with the realistic metal-dielectric multilayer waveguide structure.  相似文献   

10.
We present a comprehensive numerical investigation on the guiding properties of a nanotube based hybrid plasmonic waveguide, which comprises a high-index dielectric nanotube placed above a metallic substrate. It is shown that the incorporation of the nanotube offers additional freedom for tuning the optical performance of the hybrid plasmonic structure when compared to the traditional nanowire based hybrid counterparts, which enables further reduction of the propagation loss and enhanced field confinement inside the gap region, while simultaneously maintaining a subwavelength mode size at appropriate geometries. Systematic geometric parameters mapping considering the size of the nanotube and the dimension of the gap reveals that the tradeoff between the confinement and loss could be further balanced through optimizing key physical parameters. These investigations potentially lay the groundwork for the further applications of nanotube based hybrid structures.  相似文献   

11.
设计了一种由涂覆双层石墨烯的圆形介质纳米线组成的表面等离子体光波导。利用有限元法(FEM),数值分析了纳米线半径、介质夹层厚度、石墨烯化学势以及工作频率对波导所支持的电磁场模式的有效折射率、传播长度、归一化模式面积以及品质因数等模式特性的影响。结果表明,这种新型的混合表面等离子体光波导具有很强的模式束缚能力,归一化模式面积非常小,可以实现极高密度的器件集成,并且传输损耗较低。  相似文献   

12.
Li Q  Song Y  Zhou G  Su Y  Qiu M 《Optics letters》2010,35(19):3153-3155
Asymmetric directional coupling between a hybrid plasmonic waveguide with subwavelength field confinement and a conventional dielectric waveguide is investigated. The proposed hybrid coupler features short coupling length, high coupling efficiency, high extinction ratio, and low insertion loss; it can also be integrated into a silicon-based platform. This coupler can be potentially adopted for signal routing between plasmonic waveguides and dielectric waveguides in photonic integrated circuits. Furthermore, it can be exploited to efficiently excite hybrid plasmonic modes with conventional dielectric modes.  相似文献   

13.
Numerical solutions are obtained for the proposed novel hybrid terahertz plasmonic waveguide structure, namely the silicon metal silicon (SMS) waveguide. It is shown that the SMS waveguide can overcome the diffraction limit while still maintaining a sizeable propagation length. The geometric dependence of the mode characteristics of this structure is analyzed in detail, showing strong confinement and low loss with propagation lengths exceeding 14 mm at normalized mode areas of 1.72 × 10−2. By using the FEM method (Comsol), the guiding properties of the hybrid terahertz surface plasmon polariton (HTSPP) waveguide are numerically analyzed at the THz frequency, and a combination of double-structured comparisons of the best features of the terahertz plasmonic waveguide is made. Depending on the height used and how the mode confinement is measured, various modal designs, such as double microwire structures, are developed. The structures indicate that we verified the possibility of low attenuation loss of hybrid THz plasmonics propagation. The effective mode area Aeff, energy distribution, and propagation length Lp versus height for waveguides with Si microwire and SiO2 are shown. The numerical calculation results reveal a potential for use in applications such as optical force in trapping and transporting biomolecules, and in high-density integrated circuits.  相似文献   

14.
K Liu  W Xu  ZH Zhu  WM Ye  XD Yuan  C Zeng 《Optics letters》2012,37(14):2826-2828
This Letter proposes a dielectric waveguide with deep-subwavelength mode sizes. Results of both frequency domain and time domain analysis show that the effective mode area is below λ(0)(2)/400 and can even reach λ(0)(2)/1000 (λ(0) is the wavelength in vacuum). The effective electrical mode area can be comparable to that of a hybrid plasmonic subwavelength confinement waveguide, with reduced optical absorption. In contrast to slot waveguides, which guide light in low-index materials, the proposed structure guides light in high-index materials. Results obtained in this Letter show that the losses are sensitive to the surface roughness on the tens of nanometers scale. The structure can be used to design ring resonators with a quality factor comparable to that of a diffraction-limited dielectric ring resonator with the same standing wave numbers. The property can be applied in nonlinear effect enhancement or laser design with ultralow threshold.  相似文献   

15.
Recently a new type of lithium niobate waveguide was suggested for potential nonlinear optic applications. The waveguide consists of a uniform large core and a leaky coupled slab for realizing a lateral optical confinement to support the fundamental spatial mode propagation. Inside the waveguide, the slab layer is required to have a refractive index slightly lower than that of the core, but higher than that of the substrate. Lithium niobate doped with magnesium oxides shows an increased refractive index that is dependent on the dopant's concentration. Therefore, in order to fabricate such waveguides, the pulsed laser deposition approach was used to study the growth of such composition-modified lithium niobate as the slab layer. The as-grown films were characterized on its expitaxy, structure, and optical performance, via X-ray diffraction analysis, optical guiding experiment, etc.  相似文献   

16.
研究了紫外表面等离激元在半导体纳米线-绝缘介质-金属构成的波导结构中的输运问题,借助有限元方法,对这种波导所支持导模的电磁能分布、有效折射率、传播长度和有效模场面积随电磁参数和几何结构参数的依赖关系进行了分析.计算结果表明:以氧化锌纳米线作为增益介质,绝缘材料选择折射率小的空气,金属选择铝能够实现对输出光场的亚波长约束,有效模场面积达到λ2/100,同时保持低的传输损耗和高场强限制能力;有望用作纳米光源,使得相关的生物探测器件和医疗诊断设备实现更高的灵敏度和更小的体积.  相似文献   

17.
The propagation of the HE11 mode and Gaussian beams in hollow oversized circular waveguides is analyzed using optical theories. Different types of waveguides are considered : hollow dielectric or conducting waveguides, dielectric-lined waveguides, corrugated waveguides. General formulas are derived which give the power transmission through these different guides. The best wall materials and structures are determined from a comparison of the waveguide transmissions, at the infrared and millimeter wavelengths. The question of the coupling between the HE11 mode and Gaussian beams is discussed and from a review of coupling coefficients derived before, an optimum value is pointed out. The problem of matching a Gaussian beam into circular waveguides in order to achieve the maximum power transmission is analyzed. These results are of interest for infrared lasers or waveguide applications and for Electron Cyclotron Wave (ECW) systems at the millimeter wavelength.  相似文献   

18.
We report a study of a two-layer dielectric-loaded surface plasmon polariton waveguide (TDLSPPW) which consisted of two dielectric layers (high-index/low-index) on a silver film. The discontinuity of the electric field at the interfaces resulted in a concentrated field in the low-index region. It efficiently reduced the propagation loss of the surface plasmon polariton mode. The mode fields and corresponding complex propagation constants were calculated by a vector finite-difference method. The propagation properties were measured by a modified near-field optical microscope. It is confirmed that the propagation length of the proposed TDLSPPW was about 1.6 times longer than conventional single-layer SPP waveguides. In addition, a 90° waveguide turn with 3 μm radius showed that the bending loss was smaller than 2 dB.  相似文献   

19.
The finite difference method is exploited for a full-vectorial analysis of mushroom-type waveguides for traveling wave electroabsorption modulators (TWEAM) based on asymmetric intra-step-barrier coupled double strained quantum wells (AICD-SQW). In this analysis, the discontinuities of the normal components of the electric field across abrupt dielectric interfaces which are known as the limitations of scalar and semivectorial approximation methods are considered. The optical field distributions in mushroom-type TWEAM based on AICD-SQW and conventional ridge-type TWEAM of the same active region for 1.55 μm operation are presented. The important parameters in the high-frequency TWEAM design such as optical effective index which defines optical velocity and transverse mode confinement factor are calculated. Then, the transmission line microwave properties (microwave index, microwave loss, and characteristic impedance) of TWEAMs are obtained. The modulation response of mushroom-type TWEAM is calculated using circuit model by considering interaction between microwave and optical fields in waveguide and compared with conventional ridge-type TWEAM. It is found that increasing the width of p-cladding layer with the same i-layer to reduce the resistance in p-i-n mushroom-type waveguide of TWEAM based on AICD-SQW can improve the microwave propagation loss and thus the high-speed electro-optical response.  相似文献   

20.
A novel dielectric slot waveguide supporting strongly confined field in a T-shaped low-index slot region for both TE and TM polarizations is proposed and analyzed. Numerical simulations have demonstrated that quite different birefringent modal properties are achievable with tight optical confinement in the slot by tuning key geometrical parameters of the waveguide. Based on such a slot structure, the characteristics of directional couplers are investigated and the conditions for polarization independent coupling are also given. The presented T-shaped slot waveguide might be employed in integrated photonic systems as important building blocks enabling a number of potential applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号