首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of alkyl halides with arylmagnesium bromides in the presence of cobalt(II)(diphosphine) complexes are discussed. Treatment of 1-bromooctane with phenylmagnesium bromide with the aid of a catalytic amount of CoCl2(dppp) [DPPP=1,3-bis(diphenylphosphino)propane] yielded octylbenzene in good yield. The reaction mechanism would include single electron transfer from an electron-rich cobalt complex to alkyl halide to generate the corresponding alkyl radical. The mechanism was justified by CoCl2(dppe)-catalyzed [DPPE=1,2-bis(diphenylphosphino)ethane] sequential radical cyclization/cross-coupling reactions of 6-halo-1-hexene derivatives that yielded benzyl-substituted cyclopentane skeletons.  相似文献   

2.
Despite their considerable practical value, palladium/1,3-diene-catalyzed cross-coupling reactions between Grignard reagents RMgCl and alkyl halides AlkylX remain mechanistically poorly understood. Herein, we probe the intermediates formed in these reactions by a combination of electrospray-ionization mass spectrometry, UV/Vis spectroscopy, and NMR spectroscopy. According to our results and in line with previous hypotheses, the first step of the catalytic cycle brings about transmetalation to afford organopalladate anions. These organopalladate anions apparently undergo SN2-type reactions with the AlkylX coupling partner. The resulting neutral complexes then release the cross-coupling products by reductive elimination. In gas-phase fragmentation experiments, the occurrence of reductive eliminations was observed for anionic analogues of the neutral complexes. Although the actual catalytic cycle is supposed to involve chiefly mononuclear palladium species, anionic palladium nanoclusters [PdnR(DE)n], (n=2, 4, 6; DE=diene) were also observed. At short reaction times, the dinuclear complexes usually predominated, whereas at longer times the tetra- and hexanuclear clusters became relatively more abundant. In parallel, the formation of palladium black pointed to continued aggregation processes. Thus, the present study directly shows dynamic behavior of the palladium/diene catalyst system and degradation of the active catalyst with increasing reaction time.  相似文献   

3.
A cobalt complex, [CoCl2(dpph)] (DPPH = [1,6-bis(diphenylphosphino)hexane]), catalyzes an intermolecular styrylation reaction of alkyl halides in the presence of Me3SiCH2MgCl in ether to yield beta-alkylstyrenes. A variety of alkyl halides including alkyl chlorides can participate in the styrylation. A radical mechanism is strongly suggested for the styrylation reaction. The sequential isomerization/styrylation reactions of cyclopropylmethyl bromide and 6-bromo-1-hexene provide evidence of the radical mechanism. Crystallographic and spectroscopic investigations on cobalt complexes reveal that the reaction would begin with single electron transfer from an electron-rich (diphosphine)bis(trimethylsilylmethyl)cobalt(II) complex followed by reductive elimination to yield 1,2-bis(trimethylsilyl)ethane and a (diphosphine)cobalt(I) complex. The combination of [CoCl2(dppb)] (DPPB = [1,4-bis(diphenylphosphino)butane]) catalyst and Me3SiCH2MgCl induces intramolecular Heck-type cyclization reactions of 6-halo-1-hexenes via a radical process. On the other hand, the intramolecular cyclization of the prenyl ether of 2-iodophenol would proceed in a fashion similar to the conventional palladium-catalyzed transformation. The nonradical oxidative addition of carbon(sp2)-halogen bonds to cobalt is separately verified by a cobalt-catalyzed cross-coupling reaction of alkenyl halides with Me3SiCH2MgCl with retention of configuration of the starting vinyl halides. The cobalt-catalyzed intermolecular radical styrylation reaction of alkyl halides is applied to stereoselective variants. Styrylations of 1-alkoxy-2-bromocyclopentane derivatives provide trans-1-alkoxy-2-styrylcyclopentane skeletons, one of which is optically pure.  相似文献   

4.
The electron-poor palladium(0) complex L3Pd (L=tris[3,5-bis(trifluoromethyl)phenyl]phosphine) reacts with Grignard reagents RMgX and organolithium compounds RLi via transmetalation to furnish the anionic organopalladates [L2PdR], as shown by negative-ion mode electrospray-ionization mass spectrometry. These palladates undergo oxidative additions of organyl halides R′X (or related SN2-type reactions) followed by further transmetalation. Gas-phase fragmentation of the resulting heteroleptic palladate(II) complexes results in the reductive elimination of the cross-coupling products RR′. This reaction sequence corresponds to a catalytic cycle, in which the order of the elementary steps of transmetalation and oxidative addition is switched relative to that of palladium-catalyzed cross-coupling reactions proceeding via neutral intermediates. An attractive feature of the palladate-based catalytic system is its ability to mediate challenging alkyl–alkyl coupling reactions. However, the poor stability of the phosphine ligand L against decomposition reactions has so far prevented its successful use in practical applications.  相似文献   

5.
The copper-catalyzed enantioconvergent radical C(sp3)−C(sp2) cross-coupling of tertiary α-bromo-β-lactams with organoboronate esters could provide the synthetically valuable α-quaternary β-lactams. The challenge arises mainly from the construction of sterically congested quaternary stereocenters between the tertiary alkyl radicals and chiral copper(II) species. Herein, we describe our success in achieving such transformations through the utilization of a copper/hemilabile N,N,N-ligand catalyst to forge the sterically congested chiral C(sp3)−C(sp2) bond via a single-electron reduction/transmetalation/bond formation catalytic cycle. The synthetic potential of this approach is shown in the straightforward conversion of the corresponding products into many valuable building blocks. We hope that the developed catalytic cycle would open up new vistas for more enantioconvergent cross-coupling reactions.  相似文献   

6.
Conventionally, sulfones are prepared by oxidation of sulfides with strong oxidants. Now, a multicomponent reductive cross-coupling involving an inorganic salt (sodium metabisulfite) for the straightforward construction of sulfones is disclosed. Both intramolecular and intermolecular reductive cross-couplings were comprehensively explored, and diverse sulfones were accessible from the corresponding alkyl and aryl halides. Intramolecular cyclic sulfones were systematically obtained from five- to twelve-membered rings. Naturally occurring aliphatic systems, such as steroids, saccharides, and amino acids, were highly compatible with the SO2-insertion reductive cross-coupling. Four clinically applied drug molecules, which include multiple heteroatoms and functional groups with active hydrogens, were successfully prepared via a late-stage SO2 insertion. Mechanistic studies show that alkyl radicals and sulfonyl radicals were both involved as intermediates in this transformation.  相似文献   

7.
The mechanism of ligand substitution in 17- and 19-electron organometallic radicals is discussed. These species substitute ligands by an associative process some 106 to 1010 faster than analogous 18-electron complexes. When 17-electron species can be generated by bond homolysis or electron transfer reactions of 18-electron complexes, they can act as intermediates in radical chain reactions of 18-electron complexes. A 17–19 electron rule is proposed to explain transformations of organometallic radicals just as the 16–18 electron rule finds use for closed shell organometallic complexes. The origin of this rule is the favorable two-center three-electron bond that can form when an odd electron in a sterically accessible metal d-orbital interacts with an electron pair on an entering nucleophile. Besides simple substitution, these radicals can disproportionate, dimerize, and undergo insertion or atom abstraction reactions.  相似文献   

8.
With the aim of exploiting new organometallic species for cross-coupling reactions, we report here on the AuIII-mediated Caryl−P bond formation occurring upon reaction of C^N cyclometalated AuIII complexes with phosphines. The [Au(C^N)Cl2] complex 1 featuring the bidentate 2-benzoylpyridine (CCON) scaffold was found to react with PTA (1,3,5-triaza-7-phosphaadamantane) under mild conditions, including in water, to afford the corresponding phosphonium 5 through C−P reductive elimination. A mechanism is proposed for the title reaction based on in situ 31P{1H} NMR and HR-ESI-MS analyses combined with DFT calculations. The C−P coupling has been generalized to other C^N cyclometalated AuIII complexes and other tertiary phosphines. Overall, this work provides new insights into the reactivity of cyclometalated AuIII compounds and establishes initial structure–activity relationships to develop AuIII-mediated C−P cross-coupling reactions.  相似文献   

9.
The reaction of readily available and bench-stable N-alkoxypyridinium salts with arylboronic and vinylboronic acids afforded δ-aryl and δ-vinyl alcohols, respectively, in the presence of fac-Ir(ppy)3 and Cu(OTf)2 dual catalysts. The reaction takes place through a domino process involving the reductive generation of alkoxyl radicals, 1,5-hydrogen atom transfer (1,5-HAT) and the copper-catalyzed cross-coupling reaction of the resulting translocated carbon radicals with boronic acids. Complementary to the Minisci reaction, this method allows for the arylation of nucleophilic alkyl radicals with both electron-rich and electron-poor arenes under mild reaction conditions.  相似文献   

10.
Square planar cobalt(III) complexes with redox-active amidophenolate ligands are strong nucleophiles that react with alkyl halides, including CH(2)Cl(2), under gentle conditions to generate stable square pyramidal alkylcobalt(III) complexes. The net electrophilic addition reactions formally require 2e(-) oxidation of the metal fragment, but there is no change in metal oxidation state because the reaction proceeds with 1e(-) oxidation of each amidophenolate ligand. Although the four-coordinate complexes are very strong nucleophiles, they are mild outer-sphere reductants. Accordingly, addition of alkyl- or phenylzinc halides to the five-coordinate organometallic complexes regenerates the square planar starting materials and extrudes C-C coupling products. The net 2e(-) reductive elimination reaction also occurs without a oxidation state change at the cobalt(III) center. Together these reactions comprise a complete, well-defined cycle for cobalt Negishi-like cross-coupling of alkyl halides with organozinc reagents.  相似文献   

11.
Reported herein is an unprecedented protocol for trifluoromethylation of unactivated aliphatic C(sp3)?H bonds. With Cu(OTf)2 as the catalyst, the reaction of N‐fluoro‐substituted carboxamides (or sulfonamides) with Zn(CF3)2 complexes provides the corresponding δ‐trifluoromethylated carboxamides (or sulfonamides) in satisfactory yields under mild reaction conditions. A radical mechanism involving 1,5‐hydrogen atom transfer of N‐radicals followed by CF3‐transfer from CuII?CF3 complexes to the thus formed alkyl radicals is proposed.  相似文献   

12.
A parabolic model of bimolecular radical reactions was used for analysis of the hydrogen transfer reactions of ketyl radicals: >C·OH+R1COR2→>C=O+R1R2C·OH. The parameters describing the reactivity of the reagents were calculated from the experimental data. The parameters that characterize the reactions of ketyl and alkyl radicals as hydrogen donors with olefins and with carbonyl compounds were obtained: >C·OH+R1CH=CH2→>C=O+R1C·HCH3; >R1CH=CH2+R2C·HCH2R3→R2C·HCH3+R2CH=CHR3. These parameters were used to calculate the activation energies of these transformations. The kinetic parameters of reactions of hydrogen abstraction by free radicals and molecules (adelhydes, ketones, and quinones) from the C−H and O−H bonds were compared. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2178–2184, November, 1998.  相似文献   

13.
Abstract

Although alkylcopper(I) reagents are widespread, compounds containing alkyl ligands on CuII or CuIII are much less common. Such complexes, however, are generated as transient species when carbon-center radicals add to CuI or CuII complexes, respectively, and appear to be involved in several copper-catalyzed organic transformations. A few organocopper(II) and organocopper(III) complexes were found sufficiently robust to allow isolation and full characterization. This article reviews the reactivity of carbon-centered radicals with CuI and CuII ions, both in aqueous and non-aqueous environments, with focus on the importance of the resulting organocopper species on atom transfer radical polymerization and on copper-catalyzed radical termination.  相似文献   

14.
Carbon-fluorine bonds are stable and have demonstrated sluggishness against various chemical manipulations. However, selective transformations of C−F bonds can be achieved by developing appropriate conditions as useful synthetic methods in organic chemistry. This review focuses on C−C bond formation at monofluorinated sp3-hybridized carbons via C−F bond cleavage, including cross-coupling and multi-component coupling reactions. The C−F bond cleavage mechanisms on the sp3-hybridized carbon centers can be primarily categorized into three types: Lewis acids promoted F atom elimination to generate carbocation intermediates; nucleophilic substitution with metal or carbon nucleophiles supported by the activation of C−F bonds by coordination of Lewis acids; and the cleavage of C−F bonds via a single electron transfer. The characteristic features of alkyl fluorides, in comparison with other (pseudo)halides as promising electrophilic coupling counterparts, are also discussed.  相似文献   

15.
Negishi cross-coupling reaction of organozinc compounds as nucleophiles with aryl halides has drawn immense focus for C−C bond formation reactions. In comparison to the well-established library of Pd complexes, the C−C cross-coupling of this particular approach is largely primitive with nickel-complexes. Herein, we describe the syntheses of Ni(II) complexes, [(MeBICAAC)2NiX2] (X=Cl ( 1 ), Br ( 2 ), and I ( 3 )) by employing the bicyclic (alkyl)(amino)carbene (MeBICAAC) ligand. The reduction of complexes 1 – 3 using KC8 afforded the two coordinate low valent, Ni(0) complex, [(MeBICAAC)2Ni(0)] ( 4 ). Complexes 1 – 4 have been characterized by spectroscopic techniques and their solid-state structures were also confirmed by X-ray crystallography. Furthermore, complexes 1 – 4 have been applied in a direct and convenient method to catalyze the Negishi cross-coupling reaction of various aryl halides with 2,6-difluorophenylzinc bromide or phenylzinc bromide as the coupling partner in the presence of 3 mol % catalyst. Comparatively, among all-pristine complexes, 1 exhibit high catalytic potential to afford value-added C−C coupled products without the use of any additive. The UV-vis studies and HRMS measurements of controlled stochiometric reactions vindicate the involvement of Ni(I)−NI(III) cycle featured with a penta-coordinated Ni(III)-aryl species as the key intermediate for 1 whereas Ni(0)/Ni(II) species are potentially involved in the catalytic cycle of 4 .  相似文献   

16.
The nickel‐catalyzed alkyl–alkyl cross‐coupling (C?C bond formation) and borylation (C?B bond formation) of unactivated alkyl halides reported in the literature show completely opposite reactivity orders in the reactions of primary, secondary, and tertiary alkyl bromides. The proposed NiI/NiIII catalytic cycles for these two types of bond‐formation reactions were studied computationally by means of DFT calculations at the B3LYP level. These calculations indicate that the rate‐determining step for alkyl–alkyl cross‐coupling is the reductive elimination step, whereas for borylation the rate is determined mainly by the atom‐transfer step. In borylation reactions, the boryl ligand involved has an empty p orbital, which strongly facilitates the reductive elimination step. The inability of unactivated tertiary alkyl halides to undergo alkyl–alkyl cross‐coupling is mainly due to the moderately high reductive elimination barrier.  相似文献   

17.
The electron transfer kinetics of the reaction between the surfactant-cobalt(III) complex ions, cis-[Co(en)2(C12H25NH2)2]3+, cis-α-[Co(trien)(C12H25NH2)2]3+(en:ethylenediamine, trien:triethylenetetramine, C12H25NH2 : dodecylamine) by iron(II) in aqueous solution was studied at 298, 303, 308 K by spectrophotometry method under pseudo-first-order conditions using an excess of the reductant in self-micelles formed by the oxidant, cobalt(III) complex molecules, themselves. The rate constant of the electron transfer reaction depends on the initial concentration of the surfactant cobalt(III) complexes. ΔS# also varies with initial concentration of the surfactant cobalt(III) complexes. By assuming outer-sphere mechanism, the results have been explained based on the presence of aggregated structures containing cobalt(III) complexes at the surface of the self-micelles formed by the surfactant cobalt(III) complexes in the reaction medium. The rate constant of each complex increases with initial concentration of one of the reactants surfactant-cobalt(III) complex, which shows that self micelles formed by surfactant-cobalt(III) complex itself has much influence on these reactions. The electron transfer reaction of the surfactant-cobalt(III) complexes was also carried out in a medium of various concentrations of β-cyclodextrin. β-cyclodextrin retarded the rate of the reaction.  相似文献   

18.
The incorporation of CO2 into organometallic and organic molecules represents a sustainable way to prepare carboxylates. The mechanism of reductive carboxylation of alkyl halides has been proposed to proceed through the reduction of NiII to NiI by either Zn or Mn, followed by CO2 insertion into NiI‐alkyl species. No experimental evidence has been previously established to support the two proposed steps. Demonstrated herein is that the direct reduction of (tBu‐Xantphos)NiIIBr2 by Zn affords NiI species. (tBu‐Xantphos)NiI‐Me and (tBu‐Xantphos)NiI‐Et complexes undergo fast insertion of CO2 at 22 °C. The substantially faster rate, relative to that of NiII complexes, serves as the long‐sought‐after experimental support for the proposed mechanisms of Ni‐catalyzed carboxylation reactions.  相似文献   

19.
Iron‐catalyzed cross‐coupling reactions have an outstanding potential for sustainable organic synthesis, but remain poorly understood mechanistically. Here, we use electrospray‐ionization (ESI) mass spectrometry to identify the ionic species formed in these reactions and characterize their reactivity. Transmetalation of Fe(acac)3 (acac=acetylacetonato) with PhMgCl in THF (tetrahydrofuran) produces anionic iron ate complexes, whose nuclearity (1 to 4 Fe centers) and oxidation states (ranging from ?I to +III) crucially depend on the presence of additives or ligands. Upon addition of iPrCl, formation of the heteroleptic FeIII complex [Ph3Fe(iPr)]? is observed. Gas‐phase fragmentation of this complex results in reductive elimination and release of the cross‐coupling product with high selectivity.  相似文献   

20.
《Comptes Rendus Chimie》2014,17(6):541-548
The new well-defined and air stable anionic iron complexes bearing an imidazolidinium ligand (2ad) have been synthesized and characterized by elemental analysis and single-crystal X-ray diffraction studies. Starting from FeBr2, [imidazolidinium][FeBr4] complexes 2a and 2b were prepared. The reaction of imidazolidinium chlorides with Fe(OAc)2, followed by a recrystallization in the air led to bis(imidazolidinium) μ-oxido-bis[trichloroferrate(III)] complexes 2c and 2d. The catalytic activity of these novel complexes has been evaluated in the cross-coupling reactions of alkyl halides with Grignard reagents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号