首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The laser Raman spectrum of S2Cl2 varies with the sample temperature and/or the laser power. The Raman signals of S2Cl2 decreases as the sample molecules within the laser beam are dissociated by absorbing 514.5 nm photons. Above 540 K and 2 W of laser power, new resonance Raman and fluorescence bands appear. These bands were all assigned to S2Cl. The fluorescence bands could be classified into two transition systems. Only one of them had the ground electronic state as its lower state. For the other, the low lying first excited state à was suspected. The fundamental frequencies suggested for the three vibrational modes were 664, 196 and 450 cm−1 for the state and 630, 249 and 554 cm−1 for the à state respectively.  相似文献   

2.
We prepared a N^N Pt(II) bisacetylide complex that has strong absorption of visible light (molar absorption coefficients ϵ=6.7×104 M−1 cm−1 at 570 nm), and the singlet oxygen quantum yield (ΦΔ) is up to 78 %. Femtosecond transient absorption spectra show the intersystem crossing (ISC) of the complex takes 81.8 ps, nanosecond transient absorption spectra show the triplet excited state lifetime is 7.6 μs. Density functional theory (DFT) computation demonstrated that the S1 and T1 states are mainly localized on the perylenemonoimide (PMI) ligands, although the involvement of the Pt(II) centre is noticeable. The complex was used as triplet photosensitizer to generate delayed fluorescence with perylenebisimide (PBI) as the triplet state energy acceptor and emitter, via the intermolecular triplet-triplet energy transfer (TTET) and triplet-triplet annihilation (TTA), the delayed fluorescence lifetime is up to 52.5 μs under the experimental conditions.  相似文献   

3.
Orthogonal phenoxazine-styryl BODIPY compact electron donor/acceptor dyads were prepared as heavy atom-free triplet photosensitizers (PSs) with strong red light absorption (ϵ=1.33×105 M−1 cm−1 at 630 nm), whereas the previously reported triplet photosensitizers based on the spin-orbit charge transfer intersystem crossing (SOCT-ISC) mechanism show absorption in a shorter wavelength range (<500 nm). More importantly, a long-lived triplet state (τT=333 μs) was observed for the new dyads. In comparison, the triplet state lifetime of the same chromophore accessed with the conventional heavy atom effect (HAE) is much shorter (τT=1.8 μs). Long triplet state lifetime is beneficial to enhance electron or energy transfer, the primary photophysical processes in the application of triplet PSs. Our approach is based on SOCT-ISC, without invoking of the HAE, which may shorten the triplet state lifetime. We used bisstyrylBodipy both as the electron acceptor and the visible light-harvesting chromophore, which shows red-light absorption. Femtosecond transient absorption spectra indicated the charge separation (109 ps) and SOCT-ISC (charge recombination, CR; 2.3 ns) for BDP-1 . ISC efficiency of BDP-1 was determined as ΦT=25 % (in toluene). The dyad BDP-3 was used as triplet PS for triplet-triplet annihilation upconversion (upconversion quantum yield ΦUC=1.5 %; anti-Stokes shift is 5900 cm−1).  相似文献   

4.
The intermolecular vibrations of the anisole—benzene complex in the ground and excited electronic states have been observed by the LIF (laser-induced fluorescence) and fluorescence-dip techniques. Short progressions due to the intermolecular vibrations suggest a small structure change of the complex upon electronic excitation. The LIF excitation spectrum shows predominant progressions of 27 cm−1, which is tentatively assigned to one of the intermolecular bending modes in the excited electronic state. On the other hand, the fluorescence-dip spectrum shows only a series of bands with irregular intervals due to the intermolecular modes in the ground electronic state. The decay rates of the vibrationally excited complex in the ground electronic state have also been measured with the SEP-LIF (stimulated emission pumping-laser-induced fluorescence) technique, where the complex vibrationally excited by SEP is probed by the delayed LIF measurements. The complex excited to its purely intermolecular mode stays in the initially prepared state after a delay time of 1 μs. On the other hand, the complex excited to the intramolecular vibrational states above 500 cm−1 does not seem to stay in the prepared states. Neither the relaxed complex nor the dissociated monomer was detected. A possible reason for this observation is discussed.  相似文献   

5.
An electronic spectrum of the nickel monoboride radical has been observed for the first time, in a reaction between a nickel plasma and diborane. Numerous bands of 58Ni10B and 58Ni11B have been recorded between 442 and 503 nm in laser-induced fluorescence (LIF). Dispersed fluorescence experiments have also been performed. The LIF spectrum is dominated by a strong progression of bands of a [19.7]2Σ+X2Σ+ transition. Analyses have been carried out to yield the following 58Ni11B ground state parameters: r0 = 0.1698 nm, ωe = 778 cm−1, ωexe = 4.9 cm−1. Strong signals from NiH have also been observed.  相似文献   

6.
《Chemical physics》2005,315(3):215-239
Geometrical structure of free-base porphin (H2P) and Mg- and Zn-porphyrins together with their vibrational frequencies and vibronic intensities in phosphorescence are investigated by density functions theory (DFT) with the standard B3LYP functional. These molecules have a closed-shell singlet ground state (S0) and low-lying triplet (T1) excited states of ππ* type. The S0–T1 transition probability and radiative lifetime of phosphorescence (τp) of these molecules are calculated by time-dependent DFT utilizing quadratic response functions for account of spin–orbit coupling (SOC) and electric-dipole transition moments including displacements along active vibrational modes. The infrared and Raman spectra in the ground singlet and first excited triplet states are also studied for proper assignment of vibronic patterns. The long radiative lifetime of free-base porphin phosphorescence (τp  360 s at low temperature limit, 4.2 K) gets considerably shorter for the metalloporphyrins. An order of magnitude reduction of τp is predicted for Mg-porphyrin but no change of phosphorescence polarization is found. A forty times enhancement of the radiative phosphorescence rate constant is obtained for Zn-porphyrin in comparison with the H2P molecule which is accompanied by a strong change of polarization and spin-sublevel radiative activity. A strong vibronic activity of free-base porphin phosphorescence is found for the b2g mode at 430 cm−1, while the 679 and 715 cm−1 vibronic bands of b3g symmetry are less active. These and other out-of-plane vibrations produce considerable changes in the radiative constants of different spin sublevels of the triplet state; they also promote the S1  T1 intersystem crossing. Among the in-plane vibrations the ag mode at 1614 cm−1 is found very active; it produces a long progression in the phosphorescence spectrum. The time-dependent DFT calculations explain the effects of the transition metal atom on phosphorescence of porphyrins and reproduce differences in their phosphorescence and EPR spectra.  相似文献   

7.
The dimethylpolyene deca-2,4,6,8-tetraene was studied by absorption, fluorescence excitation and fluorescence spectroscopy in glasses at 77 K and in n-alkane crystals at 4.2 K. A strong transition to a 1Bu excited state is observed with an origin at 32400 cm?1 in isopentane at 77 K and at 31280 cm?1 in n-undecane at 4.2 K. A weak transition to a 1Ag excited state is observed with an origin at 28738 cm?1 in the n-undecane matrix. The radiative fluorescence lifetime is 500 ns. In undecane the transition from the ground state to the 1Ag excited state exhibits a classic Herzberg—Teller vibronic pattern indicating a symmetry forbidden transition.  相似文献   

8.
1064-nm-excited Fourier transform Raman spectra of bacteriochlorophyll-a (BChl) in various solid films and in chromatophores from a blue-green mutant of Rhodobacter sphaeroides have been obtained. The observed Raman spectra are free from high fluorescence backgrounds and sample degradation. The observed intensities seem to be enhanced because of a pre-resonant effect between the exciting radiation at 1064 nm and the Qy absorption at 770–870 nm of BChl. The spectral features are substantially different from the Soret and Qx resonance Raman spectra extensively investigated so far; several bands in the wavenumber region lower than 1200 cm−1 are particularly enhanced in the Qy pre-resonance Raman spectra. Bands due to both the C2O and C9O stretches appear at 1700–1620 cm−1, providing structural information on these carbonyl groups. In the CC stretching region (1620–1490 cm−1), the correlation between band positions and the co-ordination number of central magnesium, which was previously found in the Soret-excited Raman spectra, is preserved in the Qy, pre-resonance Raman spectra as well. The relative intensities of strong bands in the 1200–1000 cm−1 region appear to be useful for characterizing the BChl state. By using these advantages of the Qy, pre-resonance Raman spectra, molecular interactions and arrangements of BChl in hydrated films and in the B870 light-harvesting complex of R. sphaeroides are discussed.  相似文献   

9.
A new bis‐TTF donor (TTF is tetrathiafulvalene) containing a pyridine diester spacer, namely bis{2‐[(6,7‐tetramethylene‐3‐methylsulfanyltetrathiafulvalen‐2‐yl)sulfanyl]ethyl} pyridine‐2,6‐dicarboxylate–tetracyanoquinodimethane–dichloromethane (2/1/2), 2C33H33NO4S12·C12H4N4·2CH2Cl2, has been synthesized and its electron‐donating ability determined by cyclic voltammetry. The electrical conductivity and crystal structure of this donor–acceptor (DA) complex with TCNQ (tetracyanoquinodimethane) as the acceptor are presented. The TCNQ moiety lies across a crystallographic inversion centre. In the crystal structure, TTF and TCNQ entities are arranged in alternate stacks; this feature, together with the bond lengths of the TCNQ molecule, suggest that the expected charge transfer has not occurred and that the D and A entities are in the neutral state, in agreement with the poor conductivity of the material (σRT = 2 × 10−6 S cm−1).  相似文献   

10.
By reaction of 1,3-dihydrobenzo[c]thiophene with FeCl3, air or TCNQ the oxidatively doped polybenzo[c]thiophenes (1a, b, d, e) were prepared. Their infrared spectra showed two strong absorptions in the ranges 1265–1337 cm−1 and 1142–1184 cm−1. Efficient drying did not change these absorptions but reaction of 1a, b, d, e with LiAlH4 resulted in their decrease to weak bands. According to these results and by comparison with the infrared spectra of reference compounds data, 1a—e were found to contain sulphone groups.  相似文献   

11.
The fluorescence emission spectrum and analysis of NSF vapor is presented. Single vibronic level excitation near the S1 origin gives rise to a 10 μs radiative decay. The fluorescence lifetime for excitation of levels with ? 4500 cm?1 excess vibrational energy becomes controlled by a unimolecular radiationless process which is likely photodissociation; the dependence of this radiationless rate on energy and vibrational mode is investigated. The perturbations resulting from coupling of zero-order S1 states with other vibronic levels which control the excited state dynamics of SO2 are apparently not operative for NSF. Attempts are made to rationalize the grossly different dynamic behavior of the S1 levels of these two otherwise very similar systems.  相似文献   

12.
A study on electron transfer in three electron donor-acceptor complexes is reported. These architectures consist of a zinc phthalocyanine (ZnPc) as the excited-state electron donor and a fullerene (C60) as the ground-state electron acceptor. These complexes are brought together by axial coordination at ZnPc. The key variable in our design is the length of the molecular spacer, namely, oligo-p-phenylenevinylenes. The lack of appreciable ground-state interactions is in accordance with strong excited-state interactions, as inferred from the quenching of ZnPc centered fluorescence and the presence of a short-lived fluorescence component. Full-fledged femtosecond and nanosecond transient absorption spectroscopy assays corroborated that the ZnPc ⋅ +-C60 charge-separated state formation comes at the expense of excited-state interactions following ZnPc photoexcitation. At a first glance, the ZnPc ⋅ +-C60 charge-separated state lifetime increased from 0.4 to 86.6 ns as the electron donor-acceptor separation increased from 8.8 to 29.1 Å. A closer look at the kinetics revealed that the changes in charge-separated state lifetime are tied to a decrease in the electronic coupling element from 132 to 1.2 cm−1, an increase in the reorganization energy of charge transfer from 0.43 to 0.63 eV, and a large attenuation factor of 0.27 Å−1.  相似文献   

13.
We present the S1 → S0 fluorescence spectrum, between 740 and 940 nm, of azulene solutions (10?3 M in methanol) excited with a Q-switched ruby laser. The nitrogen-laser excited S2 → S1 fluorescence spectrum, between 700 and 930 nm, is also reported. The transient S1 → Sn spectrum between 500 and 650 nm was studied, using synchronous nitrogen laser and dye laser excitation. The S5 (1B1(3)) state of azulene was found to be located at 45500 cm?1 and the cross section σ25 of the transient absorption S2 → S5 is estimated to be 3 × 10?18 cm2/molecule.  相似文献   

14.
The paper presents the study of selected montmorillonite standards by Raman spectroscopy and microscopy supported by elemental analysis, X-ray powder diffraction analysis and thermal analysis. Dispersive Raman spectroscopy with excitation lasers of 532 nm and 780 nm, dispersive Raman microscopy with excitation laser of 532 nm and 100× magnifying lens, and Fourier Transform-Raman spectroscopy with excitation laser of 1064 nm were used for the analysis of four montmorillonites (Kunipia-F, SWy-2, STx-1b and SAz-2). These mineral standards differed mainly in the type of interlayer cation and substitution of octahedral aluminium by magnesium or iron. A comparison of measured Raman spectra of montmorillonite with regard to their level of fluorescence and the presence of characteristic spectral bands was carried out. Almost all measured spectra of montmorillonites were significantly affected by fluorescence and only one sample was influenced by fluorescence slightly or not at all. In the spectra of tested montmorillonites, several characteristic Raman bands were found. The most intensive band at 96 cm−1 belongs to deformation vibrations of interlayer cations. The band at 200 cm−1 corresponds to deformation vibrations of the AlO6 octahedron and at 710 cm−1 can be assigned to deformation vibrations of the SiO4 tetrahedron. The band at 3620 cm−1 corresponds to the stretching vibration of structural OH groups in montmorillonites.  相似文献   

15.
A 4-amino-2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) radical was attached to the bay position of perylene-3,4 : 9,10-bis(dicarboximide) (perylenebisimide, PBI) to study the radical-enhanced intersystem crossing (REISC) and electron spin dynamics of the photo-induced high-spin states. The dyads give strong visible light absorption (ϵ=27000 M−1 cm−1at 607 nm). Attaching a TEMPO radical to the PBI unit transforms the otherwise non-radiative decay of S1 state (fluorescence quantum yield: ΦF=2.9 %) of PBI unit to ISC (singlet oxygen quantum yield: ΦΔ=31.8 %, ΦF=1.6 %). Moreover, the REISC is more efficient as compared to the heavy atom effect-induced ISC (ΦΔ=17.8 % for 1,8-dibromoPBI). For the dyad, ISC takes 245 ps and triplet state lifetime is 1.5 μs, much shorter than the native PBI (τT=126.6 μs). X- and Q-band time-resolved electron paramagnetic resonance spectroscopy shows that the exchange interaction in the photoexcited radical-chromophore dyad is larger than the triplet zero-field splitting (ZFS) and the difference of Zeeman energies of the radical and chromophore. The inversion of electron spin polarization from emissive to absorptive was observed and attributed to the initial completion of the quartet state population and the subsequent depopulation processes induced by the zero-field splitting.  相似文献   

16.
A discharge flow reactor coupled to a laser-induced fluorescence (LIF) detector and a mass spectrometer was used to study the kinetics of the reactions CH3O+Br→products (1) and CH3O+BrO→products (2). From the kinetic analysis of CH3O by LIF in the presence of an excess of Br or BrO, the following rate constants were obtained at 298 K: k1=(7.0±0.4)×10−11 cm3 molecule−1 s−1 and k2=(3.8±0.4)×10−11 cm3 molecule−1 s−1. The data obtained are useful for the interpretation of other laboratory studies of the reactions of CH3O2 with Br and BrO. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 249–255, 1998.  相似文献   

17.
Normal vibrations of ethylbenzene in the first excited state have been studied using resonant two-photon ionization spectroscopy. The band origin of ethylbenzene of S1←S0 transition appeared at 37586 cm-1. A vibrational spectrum of 2000 cm-1 above the band origin in the first excited state has been obtained. Several chain torsions and normal vibrations are obtained in the spectrum. The energies of the first excited state are calculated by the time-dependent density function theory and configuration interaction singles (CIS) methods with various basis sets. The optimized structures and vibrational frequencies of the S0 and S1 states are calculated using Hartree-Fock and CIS methods with 6-311++G(2d,2p) basis set. The calculated geometric structures in the S0 and S1 states are gauche conformations that the symmetric plane of ethyl group is perpendicular to the ring plane. All the observed spectral bands have been successfully assigned with the help of our calculations.  相似文献   

18.
The S2 state fluorescence of Zn(II)tetraphenylporphin has been studied by using two-photon absorption and optical—optical double-resonance techniques. The main process to populate the S2 state was found to be a stepwise two-photon absorption to the Snstate through the S1 state. The large absorption cross section of the Sn ← S1 transition (6.8 × 10?16 cm2 molecule?1) at 540 nm suggests that there exists a higher excited singlet state of gerade parity.  相似文献   

19.
The temperature dependence of the fluorescence quantum yield φf, the fluorescence lifetime τf, and the oscillator strength f(S0→S1) of isoquinoline in solution has been measured between room temperature and 77 K. Following an Arrhenius type expression, φf in ethanol increases from 0.012±0.002 at 295 K to 0.61±0.03 at 77 K paralleled by an increase of τf from 0.25±0.10 ns to 9.0±0.2 ns. Over the same temperature range f(S0→S1) and the radiative fluorescence lifetime remain constant. By analyzing the temperature dependent data, it is shown that a spin-allowed internal conversion process with an activation energy of ~1500 cm?1 is responsible for the observed temperature effect. A mechanism is proposed based upon a thermally activated depopulation of the S1(ππ*) state of isoquinoline via a slightly higher state, presumably the S2(ππ*) singlet state. An extremenly fast process involving the dissociation of the hydrogen bond deactivates this latter state, by possing S1.  相似文献   

20.
Using the single-photon time correlation method, we have determined the lifetime of the S2(B3Σ?u) state from the decay rate of the fluorescence at 370 nm. A lifetime of 45.0 ± 0.6 ns was measured, and the cross section for fluorescence quenching by S2 as found to be 81.3 ± 4.7 A2. A slight dependence of the lifetime on the wavelength of the excitation source over the range of 280 to 337 nm was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号