首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
硅材料在锂离子电池负极中具有极高的应用前景, 当前的挑战是其脱锂嵌锂过程中大幅度的体积变化对负极性能的影响. 本文综合评述了黏结剂策略在解决硅材料体积效应问题方面的独特优势, 探讨了硅用黏结剂的发展历程和多功能趋势, 系统总结了硅用黏结剂在提升硅负极电化学性能上的研究进展, 并对未来硅用黏结剂发展的新思路和新方向进行了展望.  相似文献   

2.
锂离子二次电池已成为日常生活中不可或缺的一部分, 而现有的锂离子电池并不能完全满足电动汽车领域高能量密度的要求, 发展具有高能量密度的电极材料是解决问题的关键. 硅负极因理论比容量高、 脱嵌锂电位低、 来源广泛等优点而备受关注, 但其巨大的体积变化(约300%)以及低的首次库仑效率阻碍了其商业应用. 预锂化技术可以有效提高首次库仑效率、 实现高性能硅基负极, 本文阐述了预锂化的科学必要性, 介绍了各种预锂化的方法以及优缺点, 最后对硅基负极预锂化应用的挑战和前景进行了展望.  相似文献   

3.
Si-based anode materials in Li-ion batteries (LIBs) suffer from severe volume expansion/contraction during repetitive discharge/charge, which results in the pulverization of active materials, continuous growth of solid electrolyte interface (SEI) layers, loss of electrical conduction, and, eventually, battery failure. Herein, we present unprecedented low-content phosphorene (single-layer black phosphorus) encapsulation of silicon particles as an effective method for improving the electrochemical performance of Si-based LIB anodes. The incorporation of low phosphorene amounts (1%, mass fraction) into Si anodes effectively suppresses the detrimental effects of volume expansion and SEI growth, preserving the structural integrity of the electrode during cycling and achieving enhanced Coulombic efficiency, capacity retention, and cycling stability for Li-ion storage. Thus, the developed method can also be applied to other battery materials with high energy density exhibiting substantial volume changes.  相似文献   

4.
5.
Amorphous Si (a‐Si) shows potential advantages over crystalline Si (c‐Si) in lithium‐ion batteries, owing to its high lithiation potential and good tolerance to intrinsic strain/stress. Herein, porous a‐Si has been synthesized by a simple process, without the uses of dangerous or expensive reagents, sophisticated equipment, and strong acids that potential cause environment risks. These porous a‐Si particles exhibit excellent electrochemical performances, owing to their porous structure, amorphous nature, and surface modification. They deliver a capacity of 1025 mAh g?1 at 3 A g?1 after 700 cycles. Moreover, the reversible capacity after electrochemical activation, is quite stable throughout the cycling, resulting in a capacity retention about around 88 %. The direct comparison between a‐Si and c‐Si anodes clearly supports the advantages of a‐Si in lithium‐ion batteries.  相似文献   

6.
The silicon (Si)-based anodes suffer from large volume expansion in the lithiation process. Aiming at improving the cycling stability of a Si/graphite composite anode processed by chemical vapor deposition (CVD) method, a functional aqueous binder was delicately designed and synthesized via an aqueous copolymerization of lithium acrylate and vinyl triethoxy silane (VTEO). The PAA-VTEO binder can in situ react with the silanol groups on the surface of Si nanoparticles to form a robust 3D cross-linked network. The resulting extremely high modulus and hardness of this integrated 3D network structure effectively restrained the volume expansion effect and significantly enhanced the electrochemical cycling stability of the CVD-Si@graphite composite anode. This work will provide new perspectives in designing functional binder for Si-based anodes.  相似文献   

7.
Lithium ion batteries which are an energy storage system have increasing attention owing to suitability and advantages for many applications. Although it has ideal specifications, the capacity properties still have to be developed. In this study, the electrical conductivity of the anode was increased by using a conductive polymer binder and the active material content of the anode was also enhanced without adding carbon additives. Silicon based anodes were manufactured by using poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate (PEDOT:PSS) and poly(3,4-ethylenedioxythiophene)/polythiophenesulfonyl chloride (PEDOT:PTS) conductive polymer binders. Si/PEDOT:PTS anode showed about 2000 mAh/g specific capacities after 60 cycles with decreasing impedance.  相似文献   

8.
The influence of environmentally friendly aqueous binders and carbon coating on the electrochemical performance of SiO powder anodes for lithium ion batteries has been investigated in detail. The SiO anode with sodium alginate (Alg), styrene butadiene rubber/sodium carboxymethyl cellulose (SCMC) or polyacrylic acid binder exhibits fairly good cycling stability. However, use of polyvinyl alcohol as binder results in rapid capacity loss during cycling. The positive effect of the former binders could be attributed to the amorphous structures and ester-like bond, which were detected by X-ray diffraction and Fourier transform infrared. The cycling performance is further enhanced by carbon coating on the surface of the SiO. The reversible capacity of SiO/C electrode with either Alg or SCMC can retain ca. 940 mAh g?1 after 100 cycles. In particular, a long-term cycling stability can be achieved for SiO/C electrode using SCMC binder. Additionally, the high irreversibility of SiO/C electrode at the first cycle can be completely compensated by a simple pretreatment.  相似文献   

9.
Constructing a solid electrolyte interface (SEI) is a highly effective approach to overcome the poor reversibility of lithium (Li) metal anodes. Herein, an adhesive and self‐healable supramolecular copolymer, comprising of pendant poly(ethylene oxide) (PEO) segments and ureido‐pyrimidinone (UPy) quadruple‐hydrogen‐bonding moieties, is developed as a protection layer of Li anode by a simple drop‐coating. The protection performance of in‐situ‐formed LiPEO–UPy SEI layer is significantly enhanced owing to the strong binding and improved stability arising from a spontaneous reaction between UPy groups and Li metal. An ultrathin (approximately 70 nm) LiPEO–UPy layer can contribute to stable and dendrite‐free cycling at a high areal capacity of 10 mAh cm?2 at 5 mA cm?2 for 1000 h. This coating together with the promising electrochemical performance offers a new strategy for the development of dendrite‐free metal anodes.  相似文献   

10.
本工作采用直接在铜箔表面恒电流电沉积的方法制备Sn负极,以NiCl2为沉积电解液的添加剂得到了Sn空心管,提高了单纯Sn负极的可逆比容量,60次循环后仍剩余184.3 mAh·g-1。进一步引入聚吡咯进行表面修饰改性,有效地提高了沉积电极的电化学循环性能,60次循环后仍剩余440.6 mAh·g-1可逆比容量,同时具备良好的循环稳定性。沉积电极可直接用作锂离子电池负极,无需任何粘结剂,电极装配操作简单。  相似文献   

11.
本工作采用直接在铜箔表面恒电流电沉积的方法制备Sn负极,以NiCl2为沉积电解液的添加剂得到了Sn空心管,提高了单纯Sn负极的可逆比容量,60次循环后仍剩余184.3 mAh·g-1。进一步引入聚吡咯进行表面修饰改性,有效地提高了沉积电极的电化学循环性能,60次循环后仍剩余440.6 mAh·g-1可逆比容量,同时具备良好的循环稳定性。沉积电极可直接用作锂离子电池负极,无需任何粘结剂,电极装配操作简单。  相似文献   

12.
Formation of the SEI layer on Si–Cu film electrode in the ionic liquid electrolyte of 1 M lithium bis(trifluoromethylsulfonyl)imide/1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide (LiTFSI/MPP-TFSI) was investigated using ex-situ ATR FTIR and X-ray photoelectron spectroscopy. The SEI layer is found to be composed of organic and inorganic compounds that are the decomposition products of MPP cation and TFSI anion, and effectively passivate the electrode surface during initial cycling. Formation of a stable SEI layer leads to an excellent capacity retention 98% of the maximum discharge capacity, delivering discharge capacities of > 1620 mAhg? 1 over 200 cycles. The data contribute to a basic understanding of SEI formation and composition responsible for the cycling performance of Si-based alloy anodes in ionic liquid electrolyte-based rechargeable lithium batteries.  相似文献   

13.
Although lithium–oxygen batteries possess a high theoretical energy density and are considered as promising candidates for next‐generation power systems, the enhancement of safety and cycling efficiency of the lithium anodes while maintaining the high energy storage capability remains difficult. Here, we overcome this challenge by cross‐stacking aligned carbon nanotubes into porous networks for ultrahigh‐capacity lithium anodes to achieve high‐performance lithium–oxygen batteries. The novel anode shows a reversible specific capacity of 3656 mAh g?1, approaching the theoretical capacity of 3861 mAh g?1 of pure lithium. When this anode is employed in lithium–oxygen full batteries, the cycling stability is significantly enhanced, owing to the dendrite‐free morphology and stabilized solid–electrolyte interface. This work presents a new pathway to high performance lithium–oxygen batteries towards practical applications by designing cross‐stacked and aligned structures for one‐dimensional conducting nanomaterials.  相似文献   

14.
Despite efforts to stabilize sodium metal anodes and prevent dendrite formation, achieving long cycle life with high areal capacities remains difficult owing to a combination of complex failure modes that involve retardant uneven sodium nucleation and subsequent dendrite formation. Now, a sodiophilic interphase based on oxygen‐functionalized carbon nanotube networks is presented, which concurrently facilitates a homogeneous sodium nucleation and a dendrite‐free, lateral growth behavior upon recurring sodium plating/stripping processes. This sodiophilic interphase renders sodium anodes with an ultrahigh capacity of 1078 mAh g?1 (areal capacity of 10 mAh cm?2), approaching the theoretical capacity of 1166 mAh g?1 of pure sodium, as well as a long cycle life up to 3000 cycles. Implementation of this anode allows for the construction of a sodium–air battery with largely enhanced cycling performance owing to the oxygen functionalization‐mediated, dendrite‐free sodium morphology.  相似文献   

15.
Despite efforts to stabilize sodium metal anodes and prevent dendrite formation, achieving long cycle life with high areal capacities remains difficult owing to a combination of complex failure modes that involve retardant uneven sodium nucleation and subsequent dendrite formation. Now, a sodiophilic interphase based on oxygen‐functionalized carbon nanotube networks is presented, which concurrently facilitates a homogeneous sodium nucleation and a dendrite‐free, lateral growth behavior upon recurring sodium plating/stripping processes. This sodiophilic interphase renders sodium anodes with an ultrahigh capacity of 1078 mAh g?1 (areal capacity of 10 mAh cm?2), approaching the theoretical capacity of 1166 mAh g?1 of pure sodium, as well as a long cycle life up to 3000 cycles. Implementation of this anode allows for the construction of a sodium–air battery with largely enhanced cycling performance owing to the oxygen functionalization‐mediated, dendrite‐free sodium morphology.  相似文献   

16.
Lithium batteries employing Li or silicon (Si) anodes hold promise for the next-generation energy storage systems. However, their cycling behavior encounters rapid capacity degradation due to the vulnerability of solid electrolyte interphases (SEIs). Though anion-derived SEIs mitigate this degradation, the unavoidable reduction of solvents introduces heterogeneity to SEIs, leading to fractures during cycling. Here, we elucidate how the reductive stability of solvents, dominated by the electrophilicity (EPT) and coordination ability (CDA), delineates the SEI formed on Li or Si anodes. Solvents exhibiting lower EPT and CDA demonstrate enhanced tolerance to reduction, resulting in inorganic-rich SEIs with homogeneity. Guided by these criteria, we synthesized three promising solvents tailored for Li or Si anodes. The decomposition of these solvents is dictated by their EPTs under similar solvation structures, imparting distinct characteristics to SEIs and impacting battery performance. The optimized electrolyte, 1 M lithium bis(fluorosulfonyl)imide (LiFSI) in N-Pyrrolidine-trifluoromethanesulfonamide (TFSPY), achieves 600 cycles of Si anodes with a capacity retention of 81 % (1910 mAh g−1). In anode-free Cu||LiNi0.5Co0.2Mn0.3O2 (NCM523) pouch cells, this electrolyte sustains over 100 cycles with an 82 % capacity retention. These findings illustrate that reducing solvent decomposition benefits SEI formation, offering valuable insights for the designing electrolytes in high-energy lithium batteries.  相似文献   

17.
Low-cost silicon microparticles(SiMP),as a substitute for nanostructured silicon,easily suffer from cracks and fractured during the electrochemical cycle.A novel n-type conductive polymer binder with excellent electronic and ionic conductivities as well as good adhesion,has been successfully designed and applied for high-performance SiMP anodes in lithium-ion batteries to address this problem.Its unique features are attributed to the stro ng electron-withdrawing oxadiazole ring structure with sulfonate polar groups.The combination of rigid and flexible components in the polymer ensures its good mechanical strength and ductility,which is beneficial to suppress the expansion and contraction of SiMP s during the charge/discharge process.By fine-tuning the monomer ratio,the conjugation and sulfonation degrees of the polymer can be precisely controlled to regulate its ionic and electronic conductivities,which has been systematically analyzed with the help of an electrochemical test method,filling in the gap on the conductivity measurement of the polymer in the doping state.The experimental results indicate that the cell with the developed n-type polymer binder and SiMP(~0.5 μm) anodes achieves much better cycling performance than traditional non-conductive binders.It has been considered that the initial capacity of the SiMP anode is controlled by the synergetic effect of ionic and electronic conductivity of the binder,and the capacity retention mainly depends on its electronic conductivity when the ionic conductivity is sufficient.It is worth noting that the fundamental research of this wo rk is also applicable to other battery systems using conductive polymers in order to achieve high energy density,broadening their practical applications.  相似文献   

18.
通过经济有效的方法制备得到一种具有长循环寿命的高效稳定性硅/硅氧碳/无定形碳的复合负极材料结构. 在这种结构中,以具有稳定化学性能的硅氧碳结构作为骨架,来支撑和隔离硅纳米颗粒结构. 材料中包含的无定形碳组分可提高硅/硅氧碳结构的电导性能. 这种复合负极结构在0.3C电流充放电情况下,不仅能发挥出637.3 mAh·g-1的比容量,而且在经过100 周的充放电循环后,其容量保持率也达到86%. 这种新型硅基负极材料的设计为其他功能材料的设计提供了一种潜在可能的方法.  相似文献   

19.
硅基材料因具有目前最高的理论比容量、合适的嵌锂平台、大储量等优点,引起了众多研究者的关注,成为最具潜力的下一代锂离子电池的负极材料. 但是硅在嵌锂过程中巨大的体积变化,容易破坏电极结构的稳定性,使电极循环性能迅速衰减,这对硅基材料的应用造成了很大的阻碍. 本文主要针对近年来在硅电极自身的结构(包括:多孔硅基复合材料的合成、硅粘结剂的选择,无粘结剂的纳米硅电极的制备)以及电解液添加剂的选择两大方面的最新研究进展进行总结与评述.  相似文献   

20.
Constructing a solid electrolyte interface (SEI) is a highly effective approach to overcome the poor reversibility of lithium (Li) metal anodes. Herein, an adhesive and self-healable supramolecular copolymer, comprising of pendant poly(ethylene oxide) (PEO) segments and ureido-pyrimidinone (UPy) quadruple-hydrogen-bonding moieties, is developed as a protection layer of Li anode by a simple drop-coating. The protection performance of in-situ-formed LiPEO–UPy SEI layer is significantly enhanced owing to the strong binding and improved stability arising from a spontaneous reaction between UPy groups and Li metal. An ultrathin (approximately 70 nm) LiPEO–UPy layer can contribute to stable and dendrite-free cycling at a high areal capacity of 10 mAh cm−2 at 5 mA cm−2 for 1000 h. This coating together with the promising electrochemical performance offers a new strategy for the development of dendrite-free metal anodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号