首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silver staining, which exploits the special bioaffinity and the chromogenic reduction of silver ions, is an indispensable visualization method in biology. It is a most popular method for in‐gel protein detection. However, it is limited by run‐to‐run variability, background staining, inability for protein quantification, and limited compatibility with mass spectroscopic (MS) analysis; limitations that are largely attributed to the tricky chromogenic visualization. Herein, we reported a novel water‐soluble fluorogenic Ag+ probe, the sensing mechanism of which is based on an aggregation‐induced emission (AIE) process driven by tetrazolate‐Ag+ interactions. The fluorogenic sensing can substitute the chromogenic reaction, leading to a new fluorescence silver staining method. This new staining method offers sensitive detection of total proteins in polyacrylamide gels with a broad linear dynamic range and robust operations that rival the silver nitrate stain and the best fluorescent stains.  相似文献   

2.
Three functionalized derivatives of tetraphenylethylene (TPE), namely, 1,2-bis(4-methoxyphenyl)-1,2-diphenylethene (1), 1,2-bis(4-hydroxyphenyl)-1,2-diphenylethene (2), and 1,2-bis[4-(3-sulfonatopropoxyl)phenyl]-1,2-diphenylethene sodium salt (3), were synthesized and their fluorescence properties were investigated. All the TPE molecules are nonluminescent in the solution state but are induced to emit efficiently by aggregate formation. This novel process of aggregation-induced emission (AIE) is rationalized to be caused by the restriction of intramolecular rotations of the dye molecules in the aggregate state. The possibility of utilizing the AIE effect for protein detection and quantification is explored using bovine serum albumin (BSA) as a model protein, with salt 3 being found to perform as a stable, sensitive, and selective bioprobe.  相似文献   

3.
Chemiluminescence (CL) is an important method for quantification and analysis of various macromolecules. A wide range of CL agents such as luminol, hydrogen peroxide, fluorescein, dioxetanes and derivatives of oxalate, and acridinium dyes are used according to their biological specificity and utility. This review describes the application of luminol chemiluminescence (LCL) in forensic, biomedical, and clinical sciences. LCL is a very useful detection method due to its selectivity, simplicity, low cost, and high sensitivity. LCL has a dynamic range of applications, including quantification and detection of macro and micromolecules such as proteins, carbohydrates, DNA, and RNA. Luminol-based methods are used in environmental monitoring as biosensors, in the pharmaceutical industry for cellular localization and as biological tracers, and in reporter gene-based assays and several other immunoassays. Here, we also provide information about different compounds that may enhance or inhibit the LCL along with the effect of pH and concentration on LCL. This review covers most of the significant information related to the applications of luminol in different fields.  相似文献   

4.
铅作为一种重金属,广泛应用于工业生产,对环境和人体健康具有显著影响。因此,开发铅离子检测技术是一项具有重要意义的研究内容。荧光法与传统重金属离子检测方法相比,具有灵敏度高、选择性好等优点,故荧光法常用于水体等实际样品中重金属离子的定性或定量分析。本文围绕近几年报道的基于荧光法检测铅离子的研究现状进行介绍,包括荧光染料、荧光纳米材料、荧光生物材料包括荧光蛋白等3种检测材料,并在此基础上提出荧光法检测铅离子领域面临的主要挑战,对未来的研究趋势进行了展望。  相似文献   

5.
Aggregation‐induced emission (AIE) has attracted considerable interest over the last twenty years. In contrast to the large number of available reviews focusing specifically on AIE, this Essay discusses the AIE phenomenon from a broader perspective, with an emphasis on early observations related to AIE made long before the term was coined. Illustrative examples are highlighted from the 20th century where fluorescence enhancement upon rigidification of dyes in viscous or solid environments or J‐aggregate formation was studied. It is shown that these examples already include typical AIE luminogens such as tetraphenylethylene (TPE) as well as stilbenes and oligo‐ or polyphenylenevinylenes and ‐ethynylenes, which became important fluorescent solid‐state materials in OLED research in the 1990s. Further examples include cyanine dyes such as thiazole orange (TO) or its dimers (TOTOs), which have been widely applied as molecular probes in nucleic acid research. The up to 10 000‐fold fluorescence enhancement of such dyes upon intercalation into double‐stranded DNA, attributable to the restricted intramolecular motion (RIM) concept, afforded commercial products for bioimaging and fluorescence sensing applications already in the early 1990s.  相似文献   

6.
A sulfonated 9,10-distyrylanthracene derivative with aggregation-induced emission (AIE) property is designed and synthesized. It shows a highly sensitive and selective fluorescence enhancement property for bovine serum albumin (BSA) protein detection and quantification. Analysis on the interaction between the probe molecule and BSA reveals the essential role of the hydrophobic cavities of the protein folding structure.  相似文献   

7.
The characterization of interactions between membrane proteins as they take place within the lipid bilayer poses a technical challenge, which is currently very difficult and, in many cases, impossible to overcome. The recent development of a method based in the combination two-color fluorescence cross-correlation spectroscopy with scanning of the focal volume allows the detection and quantification of interactions between biomolecules inserted in biological membranes. This powerful strategy has allowed the quantitative analysis of diverse systems, such as the association between proteins of the Bcl-2 family involved in apoptosis regulation or the binding between a growth factor and its receptor during signaling. Here, we review the last developments to quantify protein/protein interactions in lipid membranes and focus on the use of fluorescence-correlation-spectroscopy approaches for that purpose.  相似文献   

8.
合成并表征了系列水溶性五甲川菁染料, 研究了其在不同溶剂中的光谱性能. 结果表明, 染料在水中的最大吸收和荧光光谱在647~665 nm波长范围内, 荧光量子产率达到0.1左右. 考察了N位取代基对染料水溶液光稳定性的影响, 结果表明, 在N原子上引入带有苯环结构和大体积的磺酸基, 可以提高染料的光稳定性. 高效液相色谱(HPLC)分析结果表明, 染料4a的N-羟基琥珀酰亚胺(NHS)活性酯标记牛血清白蛋白(BSA)的检测限为1.2×10-8 mol/L, 与紫外检测相比, 检测灵敏度提高了近2个数量级.  相似文献   

9.
Taking the advantage of reduced scattering and low autofluorescence background, the NIR fluorescence probes, such as fluorescence proteins, organic molecules and nanoparticles, not only hold the promise of in vivo imaging of biological processes in physiology and pathology with high signal-to-noise ratio, but also for clinical diagnosis. In this review, we provide an overview of the recent progress on NIR probes, focusing on fundamental mechanisms of NIR dyes and nanoparticles, and protein engineering strategies for NIR proteins.  相似文献   

10.
The advancement of fluorescence microscopy techniques has opened up new opportunities for visualizing proteins and unraveling their functions in living biological systems. Small-molecule organic dyes, which possess exceptional photophysical properties, small size, and high photostability, serve as powerful fluorescent reporters in protein imaging. However, achieving high-contrast live-cell labeling of target proteins with conventional organic dyes remains a considerable challenge in bioimaging and biosensing due to their inadequate cell permeability and high background signal. Over the past decade, a novel generation of fluorogenic and cell-permeable dyes has been developed, which have substantially improved live-cell protein labeling by fine-tuning the reversible equilibrium between a cell-permeable, nonfluorescent spirocyclic state (unbound) and a fluorescent zwitterion (protein-bound) of rhodamines. In this review, we present the mechanism and design strategies of these fluorogenic and cell-permeable rhodamines, as well as their applications in bioimaging and biosensing.  相似文献   

11.
The role of separation science in proteomics research.   总被引:22,自引:0,他引:22  
H J Issaq 《Electrophoresis》2001,22(17):3629-3638
In the last few years there has been an increased effort into the separation, quantification and identification of all proteins in a cell or tissue. This is a review of the role gel electrophoresis, high performance liquid chromatography (HPLC), and capillary electrophoresis (CE) play in proteomics research. The capabilities and limitations of each separation technique have been pointed out. Instrumental strategies for the resolution of cell proteins which are based on efficient separation employing either a single high-resolution procedure or a multidimensional approach on-line or off-line, and a mass spectrometer for protein identification have been reviewed. A comparison of the advantages of multi-dimensional separations such as two-dimensional polyacrylamide gel electrophoresis, HPLC-HPLC, and HPLC-CE to the separation of cell and tissue proteins are discussed. Also, a discussion of novel approaches to protein concentration, separation, detection, and quantification is given.  相似文献   

12.
To broaden the application of aggregation-induced emission (AIE) luminogens (AIEgens), the design of novel small-molecular dyes that exhibit high fluorescence quantum yield (Φfl) in the solid state is required. Considering that the mechanism of AIE can be rationalized based on steric avoidance of non-radiative decay pathways, a series of bridged stilbenes was designed, and their non-radiative decay pathways were investigated theoretically. Bridged stilbenes with short alkyl chains exhibited a strong fluorescence emission in solution and in the solid state, while bridged stilbenes with long alkyl chains exhibited AIE. Based on this theoretical prediction, we developed the bridged stilbenes BPST[7] and DPB[7], which demonstrate excellent AIE behavior.  相似文献   

13.
Mass spectrometry has arguably become the core technology for the characterization of food proteins and peptides. The application of mass spectrometry-based techniques for the qualitative and quantitative analysis of the complex protein mixtures contained in most food preparations is playing a decisive role in the understanding of their nature, structure, functional properties and impact on human health. The application of mass spectrometry to protein analysis has been revolutionized in the recent years by the development of soft ionization techniques such as electrospray ionization and matrix assisted laser desorption/ionization, and by the introduction of multi-stage and ‘hybrid’ analyzers able to generate de novo amino acid sequence information. The interfacing of mass spectrometry with protein databases has resulted in entirely new possibilities of protein characterization, including the high sensitivity mapping (femtomole to attomole levels) of post-translational and other chemical modifications, protein conformations and protein–protein and protein–ligand interactions, and in general for proteomic studies, building up the core platform of modern proteomic science. MS-based strategies to food and nutrition proteomics are now capable to address a wide range of analytical questions which include issues related to food quality and safety, certification and traceability of (typical) products, and to the definition of the structure/function relationship of food proteins and peptides. These different aspects are necessarily interconnected and can be effectively understood and elucidated only by use of integrated, up-to-date analytical approaches. In this review, the main aspects of current and perspective applications of mass spectrometry and proteomic technologies to the structural characterization of food proteins are presented, with focus on issues related to their detection, identification, and quantification, relevant for their biochemical, technological and toxicological aspects.  相似文献   

14.
To broaden the application of aggregation‐induced emission (AIE) luminogens (AIEgens), the design of novel small‐molecular dyes that exhibit high fluorescence quantum yield (Φfl) in the solid state is required. Considering that the mechanism of AIE can be rationalized based on steric avoidance of non‐radiative decay pathways, a series of bridged stilbenes was designed, and their non‐radiative decay pathways were investigated theoretically. Bridged stilbenes with short alkyl chains exhibited a strong fluorescence emission in solution and in the solid state, while bridged stilbenes with long alkyl chains exhibited AIE. Based on this theoretical prediction, we developed the bridged stilbenes BPST[7] and DPB[7], which demonstrate excellent AIE behavior.  相似文献   

15.
The work presented herein is devoted to the fabrication of large Stokes shift dyes in both organic and aqueous media by combining dark resonance energy transfer (DRET) and fluorescence resonance energy transfer (FRET) in one donor–acceptor system. In this respect, a series of donor–acceptor architectures of 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) dyes substituted by one, two, or three tetraphenylethene (TPE) luminogens were designed and synthesised. The photophysical properties of these three chromophore systems were studied to provide insight into the nature of donor–acceptor interactions in both THF and aqueous media. Because the generation of emissive TPE donor(s) is strongly polarity dependent, due to its aggregation‐induced emission (AIE) feature, one might expect the formation of appreciable fluorescence emission intensity with a very large pseudo‐Stokes shift in aqueous media when considering FRET process. Interestingly, similar results were also recorded in THF for the chromophore systems, although the TPE fragment(s) of the dyes are non‐emissive. The explanation for this photophysical behaviour lies in the DRET. This is the first report on combining two energy‐transfer processes, namely, FRET and DRET, in one polarity‐sensitive donor–acceptor pair system. The accuracy of the dark‐emissive donor property of the TPE luminogen is also presented for the first time as a new feature for AIE phenomena.  相似文献   

16.
以“自稳定沉淀聚合”制备的聚马来酸酐-醋酸乙烯酯线性交替共聚物(PMV)为原料,利用水热法制得3种新型非共轭聚集诱导发光(AIE)聚合物.通过荧光光谱、紫外-可见光光谱、傅里叶变换红外光谱(FTIR)、X射线光电子能谱分析(XPS)等表征方法,研究了3种聚合物的荧光和结构特性,并考察了其在Fe3+检测的应用.实验结果表明:3种PMV衍生物均具有AIE性质,随着水热时间的延长,聚合物的发光颜色从蓝色红移至黄色,且水热1 h所得产物固体的绝对量子产率最高,可达17.05%;所得非共轭AIE聚合物可用于Fe3+检测,当Fe3+浓度为5~200μmol/L时,猝灭效率与Fe3+浓度符合线性关系,调整确定系数为0.9922,最低检测限可低至1.22μmol/L.  相似文献   

17.
Fluorescent organic dyes are currently the standard signal-generating labels used in microarray quantification. However, new labeling strategies are needed to meet the demand for high sensitivity in the detection of low-abundance proteins and small molecules. In this report, a long-chain DNA/dye conjugate was used to attach multiple fluorescence labels on antibodies to improve signal intensity and immunoassay sensitivity. Compared with the 30 base-pair (bp) oligonucleotide used in our previous work [Q. Zhang, L.-H. Guo, Bioconjugate Chem. 18 (2007) 1668-1672], conjugation of a 219 bp DNA in solution with a fluorescent DNA binder SYBR Green I resulted in more than sixfold increase in signal intensity, consistent with the increase in bp number. In a direct immunoassay for the detection of goat anti-mouse IgG in a mouse IgG-coated 96-well plate, the long DNA conjugate label also produced higher fluorescence than the short one, accompanied by about 15-fold improvement in the detection limit. To demonstrate its advantage in real applications, the DNA/dye conjugate was employed in the competitive immunoassay of 17β-estradiol, a clinically and environmentally important analyte. The biotin-terminated DNA was attached to biotinylated anti-estradiol antibody through the biotin/streptavidin/biotin bridge after the immuno-reaction was completed, followed by conjugation with SYBR Green I. The limit of detection for 17β-estradiol is 1.9 pg mL−1, which is 200-fold lower than the assay using fluorescein-labeled antibodies. The new multiple labeling strategy uses readily available reagents, and is also compatible with current biochip platform. It has great potential in the sensitive detection of protein and antibody microarrays.  相似文献   

18.
Targeted protein quantification using peptide surrogates has increasingly become important to the validation of biomarker candidates and development of protein therapeutics. These approaches have been proposed and employed as alternatives to immunoassays in biological fluids. Technological advances over the last 20 years in biochemistry and mass spectrometry have prompted the use of peptides as surrogates to quantify enzyme digested proteins using triple quadrupole mass spectrometers. Multiple sample preparation processes are often incorporated to achieve quantification of target proteins using these signature peptides. This review article focuses on these processes or hyphenated techniques for quantification of proteins with peptide surrogates. The most recent advances and strategies involved with hyphenated techniques are discussed.  相似文献   

19.
The concept of aggregation-induced emission (AIE) has opened new opportunities in many research fields. Motivated by the unique feature of AIE fluorogens (AIEgens), during the past decade, many AIE molecular probes and AIE nanoparticle (NP) probes have been developed for sensing, imaging and theranostic applications with excellent performance outperforming conventional fluorescent probes. This Review summarizes the latest advancement of AIE molecular probes and AIE NP probes and their emerging biomedical applications. Special focus is to reveal how the AIE probes are evolved with the development of new multifunctional AIEgens, and how new strategies have been developed to overcome the limitations of traditional AIE probes for more translational applications via fluorescence imaging, photoacoustic imaging and image-guided photodynamic/photothermal therapy. The outlook discusses the challenges and future opportunities for AIEgens to advance the biomedical field.  相似文献   

20.
In the field of optical sensors, small molecules responsive to metal cations are of current interest. Probes displaying aggregation-induced emission (AIE) can solve the problems due to the aggregation-caused quenching (ACQ) molecules, scarcely emissive as aggregates in aqueous media and in tissues. The addition of a metal cation to an AIE ligand dissolved in solution can cause a “turn-on” of the fluorescence emission. Half-cruciform-shaped molecules can be a winning strategy to build specific AIE probes. Herein, we report the synthesis and characterization of a novel L-shaped fluorophore containing a benzofuran core condensed with 3-hydroxy-2-naphthaldehyde crossed with a nitrobenzene moiety. The novel AIE probe produces a fast colorimetric and fluorescence response toward zinc (II) in both in neutral and basic conditions. Acting as a tridentate ligand, it produces a complex with enhanced and red-shifted emission in the DR/NIR spectral range. The AIE nature of both compounds was examined on the basis of X-ray crystallography and DFT analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号