首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 415 毫秒
1.
A novel crystalline high-silica zeolite with 12×8-membered ring (R) channel system is prepared with the aid of the 3D electron diffraction (3D ED) technique. A crystal with the same topology as one of the predicted daughter structures of CIT-13 germanosilicate, named ECNU-23 (East China Normal University 23) was coincidentally detected by the 3D ED investigation during the structure characterization of the “pure” powder sample of existing one-dimension (1D) 10-R ECNU-21. By controlling the alkaline-assisted hydrolysis under moderate conditions, we purified the phase of ECNU-23 by selectively breaking and removing the chemically weak Ge(Si)-O-Ge and metastable Si-O-Si bonds. Its structure was determined based on the 3D ED data, and confirmed by high-resolution TEM images and powder X-ray diffraction (PXRD) data. The aluminosilicate Al-ECNU-23 shows unique catalytic properties in the isomerization/ disproportionation of m-xylene as solid-acid catalyst.  相似文献   

2.
A novel crystalline high‐silica zeolite with 12×8‐membered ring (R) channel system is prepared with the aid of the 3D electron diffraction (3D ED) technique. A crystal with the same topology as one of the predicted daughter structures of CIT‐13 germanosilicate, named ECNU‐23 (East China Normal University 23) was coincidentally detected by the 3D ED investigation during the structure characterization of the “pure” powder sample of existing one‐dimension (1D) 10‐R ECNU‐21. By controlling the alkaline‐assisted hydrolysis under moderate conditions, we purified the phase of ECNU‐23 by selectively breaking and removing the chemically weak Ge(Si)‐O‐Ge and metastable Si‐O‐Si bonds. Its structure was determined based on the 3D ED data, and confirmed by high‐resolution TEM images and powder X‐ray diffraction (PXRD) data. The aluminosilicate Al‐ECNU‐23 shows unique catalytic properties in the isomerization/ disproportionation of m‐xylene as solid‐acid catalyst.  相似文献   

3.
A high-silica zeolite ECNU-13 (Si/Al=23) with a new three-dimensional (3D) pore system and a nanosized morphology has been developed, consisting of multitudes of 10-membered ring (10-R) medium pores and one set of 8-R small pores. A phase-discrimination strategy was proposed to synthesize ECNU-13 by regulating the gel compositions and nucleation processes that were used for preparing 12-R large-pore germanosilicate IM-20 with the known UWY topology. The crystallization was directed towards forming one set of single four-ring (s4r) composite building units together with one set of double four-ring (d4r) rather than two different types of d4r units in IM-20. The electron crystallographic investigations elucidated that the ECNU-13 structure was composed of two kinds of polymorphs as a result of distinct atomic positionings in s4r units. In catalytic cracking of 1-butene, ECNU-13 exhibited high propene selectivity (55.6 %) and propene to ethylene molar ratio (>4.7) superior to well-studied conventional ZSM-5 zeolite catalyst.  相似文献   

4.
ITQ-21 has been synthesized in a wide range of compositions. By rationally modifying the synthesis variables and zeolite composition, it is possible to fine-tune the crystallite size from nanocrystals (<80 nm) up to microns and to avoid the competition of other phases such as CIT-5, SSZ-24, or a laminar phase that can also be synthesized with the same organic structure directing agent. By means of XRD and (19)F MAS NMR, Ge and Si have been localized among the different crystallographic positions, and it is shown that Ge preferentially occupies T1 positions at the D4R cages, avoiding formation of Ge-O-Ge pairs. However, at high Ge loadings (Si/Ge = 1.7), a new (19)F MAS NMR signal at -14 ppm has been observed and assigned to the presence of Ge-O-Ge in Ge-rich D4R cages. Energetic configurations obtained by theoretical calculations fully agree with experimental observations, with the following increasing order in energy for Ge substitution: T1 < T2 < Ge-O-Ge in T1 < T3.  相似文献   

5.
Germanosilicate zeolites often suffer from low hydrothermal stability due to the high content of Ge. Herein, we investigated the post‐synthesis introduction of Al accompanied by stabilization of selected germanosilicates by degermanation/alumination treatments. The influence of chemical composition and topology of parent germanosilicate zeolites ( ITH , IWW , and UTL ) on the post‐synthesis incorporation of Al was studied. Alumination of ITH (Si/Ge=2–13) and IWW (Si/Ge=3–7) zeolites resulted in the partial substitution of Ge for Al (up to 80 %), which was enhanced with a decrease of Ge content in the parent zeolite. In contrast, in extra‐large pore zeolite UTL (Si/Ge=4–6) the hydrolysis of the interlayer Ge?O bonds dominated over substitution. The stabilization of zeolite UTL was achieved using a novel two‐step degermanation/alumination procedure by the partial post‐synthesis substitution of Ge for Si followed by alumination. This new method of stabilization and incorporation of strong acid sites may extend the utilization of germanosilicate zeolites, which has been until now been limited.  相似文献   

6.
(19)F NMR chemical shifts are calculated in order to study the F(-) environment in double four ring (D4R) containing Si/Ge-zeolites. The calculations with the DFT/CSGT/B3PW91 methodology yielded an agreement within 2 ppm with respect to the experimental peaks corresponding to the D4R units containing 8Si0Ge, 7Si1Ge and 0Si8Ge of the octadecasil zeolite. The optimisation of the 7Si1Ge-, 6Si2Ge-, 5Si3Ge- and 4Si4Ge-D4R units with DFT/B3LYP methodology shows that a covalent Ge-F bond is formed and therefore a Ge atom in the D4R is pentacoordinated. The displacement of the fluoride ion towards a Ge atom in the Ge-containing D4R units locates four Si/Ge atoms in the close vicinity of the F(-) and this makes possible a rationalization of the (19)F NMR signals in groups according to the number of Si (n) and Ge (m) atoms in the nearest F(-) environment, F-Si(n)Ge(m) (where n+m=4). Thus, the calculated chemical shifts show that higher values are observed when the number of Ge atoms in the nearest F(-) environment increases.  相似文献   

7.
N-heterocyclic nitrogen Lewis acids are a recent addition to the field of organic chemistry. Based on nitrenium cations, these acids where previously shown to generate Lewis adducts when combined with the appropriate Lewis bases. Herein, a triazinium-based Lewis acid was combined with tBu3P to generate a frustrated Lewis pair (FLP) capable of cleaving, for the first time, Si−H bonds in silanes. Whereas low yields were initially encountered owing to insufficient Lewis acidity, a new nitrenium-based Lewis acid was synthesized, and its superior Lewis acidity was experimentally and computationally confirmed. A FLP based on this acid cleaved the Si−H bond in PhSiH3, generating the triazane product in a quantitative yield. This unprecedented N−H triazane was fully characterized by multinuclear NMR techniques and single-crystal X-ray crystallography. A new class of compounds, N-H triazanes display the potential capacity to participate in hydride transfer reactions.  相似文献   

8.
具有菱沸石(CHA)结构的SSZ-13分子筛在甲醇制烯烃(MTO)及柴油机车尾气氨选择性催化还原(NH_3-SCR)反应中具有重要的应用,采用富铝SSZ-13可以调节MTO反应的烯烃选择性和提升NH_3-SCR的低温脱硝活性,因此SSZ-13中的铝含量和分布与对应的酸性决定了其催化性能。本文采用密度泛函理论结合固体核磁共振实验研究了富铝和富硅HSSZ-13的Al位置与Br?nsted酸强度的内在关系。通过计算取代能发现,对于孤立Al位,质子位于Al周围4个不同O位时能量差异较小,最稳定的B酸位点是O(1)―H。对于富铝SSZ-13,两个Al原子位于同一六元环的对位是Al-Si-Si-Al (NNNN)序列中最稳定的结构,而Al-Si-Al (NNN)序列中能量最优的Al分布是两个铝原子排布于六棱柱上下不同的六元环上。通过计算最稳定构型下的质子亲和势、NH3脱附能和吸附氘代乙腈后的1H NMR化学位移,发现富铝SSZ-13中含有Si(2Al)分布的NNN序列导致了其Br?nsted酸强度弱于高硅的分子筛。分峰拟合29Si魔角旋转核磁共振(MASNMR)谱图表明富铝SSZ-13中Si(2Al)的含量在43%以上,而吸附氘代乙腈后的1H MAS NMR实验显示富铝SSZ-13的桥羟基化学位移向低场移动,进一步证明富铝SSZ-13具有较弱的Br?nsted酸强度。  相似文献   

9.
The cleavages of some new optically active complexes containing CoSi (orGe), MnSi (orGe), ReGe and WGe bonds are described. Electrophiles cleave the CoSi bond with good retention of configuration at silicon, while the MnSi bond is not cleaved under the same conditions. The M′Si and M′Ge bonds (where M'  transition metal) are cleaved by nucleophiles with retention or inversion of configuration. In the case of triginal bipyramidal geometry (cobalt complexes) the stereochemical outcome of the reaction is strongly dependent upon electronic effects, the size of the ligand trans to the CoSi (orGe) bond, and the nature of the nucleophilic reagant, in accord with the general rules for nucleophilic substitution at silicon. In contrast the transition metalsilicon orgermanium bonds in the octahedral complexes of manganese, rhenium and tungsten are always cleaved with poor retention of configuration regardless of the nature of the ligands or the nucleophilic reagent. The results provide the first cases in which the stereochemistry of nucleophilic displacement at silicon is independent of the electronic features of both the leaving group and the nucleophile.  相似文献   

10.
A new 10- and 12-membered ring zeolite, named ITQ-24, has been synthesized, and its structure has been solved. It has been found that this zeolite structure is topologically identical to that proposed for the hypothetical polymorph C of the SSZ-33/SSZ-26/CIT-1 family. This new zeolite has been achieved by using a rational approach of introducing Ge in the framework that has a directing effect toward zeolite structures with double-four-membered rings as secondary building units. Notoriously, active catalytic centers, such as Ti and Al, have been incorporated into this new zeolite, demonstrating that it is catalytically active for alkylation of aromatics.  相似文献   

11.
Through the synthesis of 2D MFI zeolite samples of Si/Al ratio ranged from 13 to 74 with inter-crystalline mesoporosity and their reference 3D counterparts, we have systematically studied and revealed the impact of Si/Al ratio on the inter-dependence of core intrinsic properties of structural porosity and acidity. It is apparent that mesopores in the 2D MFI zeolite play a critical role, dictating the accessibility and distribution of specific acid sites. It was found that, compared to their 3D counterparts, the 2D samples possess a three-times larger accessible surface area owing to the mesopores. Although having a slightly lower total number of acid sites, the 2D samples enjoy a higher percentage of accessible strong acid sites and weak Lewis acid sites. Consequently, in three selected liquid phase reactions, which had different acidity demands and molecular diffusion constraints, the 2D samples demonstrated much higher catalytic activities and resistance to deactivation. This study has, for the first time, established the relationship between Si/Al ratio and acidity for the 2D MFI zeolite, thus enabling rational selection of a Si/Al ratio for a targeted application.  相似文献   

12.
The basicity of the simplest silicone, disiloxane (H3Si−O−SiH3), is strongly affected by the Si−O−Si angle (α). We use high-level ab initio MP2/aug′-cc-pVTZ calculations and the molecular electrostatic potential (MEP) to analyze the relationship between the increase in basicity and the reduction of α. Our results clearly point out that this increase can be explained through the MEP, as the interactions between oxygen from disiloxane and the acceptors are mostly electrostatic. Furthermore, the effect of α on the tetrel bond between disiloxane and several Lewis bases can again be rationalized using the MEP. Finally, we explore the cooperativity throughout α for ternary complexes where disiloxane simultaneously interacts with a Lewis acid and a Lewis base. Both non-covalent interactions remain cooperative for all α values, although the largest cooperativity effects are not always those maximizing the binding energy in the binary complexes. Overall, the MEP remains a powerful predictor for noncovalent interactions.  相似文献   

13.
一种新型共生沸石(T-L)的合成与表征   总被引:2,自引:0,他引:2  
在Na2O-K2O-Al2O3-SiO2-H2O体系中水热合成了一种新型的共生沸石, 它由L型沸石生长在T型沸石的一端而形成, 称之为T-L型沸石. 通过XRD, SEM, TEM, EDX, IR等手段对其进行了初步的表征. SEM相片表明这种沸石具有特殊的铆钉状外形; 在TEM相片上可以清楚地看到L型沸石的大孔道, 此孔道与L型沸石的表面垂直. 通过EDX的数据计算发现共生沸石的两相有不同的骨架硅铝比: T型沸石部分Si/Al=3.71, L型沸石部分Si/Al=3.41. 在该样品中B酸大于L酸.  相似文献   

14.
The thermolysis under argon of various polysiloxane resins containing D, T, DH, or TH units was investigated using thermogravimetric analysis combined with mass spectroscopy (TG/MS analysis) and solid-state 29Si-NMR. Redistribution reactions involving the exchange of Si? C/Si? O bonds or Si? H/Si? O bonds were evidenced in addition to the exchange of Si? O/Si? O bonds reported to date. These reactions significantly modify the initial siloxane units and lead to an escape of volatile silanes or siloxanes. The exchange of Si? H/Si? O bonds takes place at lower temperatures (300°C) than the exchange of Si? C/Si? O bonds (500°C).  相似文献   

15.
Three novel isostructural equiatomic gold tetrel pnictides, AuSiAs, AuGeP, and AuGeAs, were synthesized and characterized. These phases crystallize in the noncentrosymmetric (NCS) monoclinic space group Cc (no. 9), featuring square-planar Au within cis-[AuTt2Pn2] units (Tt=tetrel, Si, Ge; Pn=pnictogen, P, As). This is in drastic contrast to the structure of previously reported AuSiP, which exhibits typical linear coordination of Au with Si and P. Chemical bonding analysis through the electron localization function suggests covalent two-center two-electron Tt−Pn bonds, and three-center Au−Tt−Au and Au−Pn−Au bonds with 1.6 e per bond. X-ray photoelectron spectroscopy studies support the covalent and nonionic nature of Au−Pn and Au−Tt bonds. The title materials were found to be n-type narrow-gap semiconductors or semimetals, with nearly temperature-independent electrical resistivities and low thermal conductivities. A combination of the semimetallic properties with tunable NCS structure provides opportunities for the development of materials based on gold tetrel pnictides.  相似文献   

16.
UV-Raman and NMR spectroscopy, combined with other techniques, have been used to characterize crystallization of zeolite A. In situ UV-Raman spectroscopy shows that the starting gel for crystallization of zeolite A contains a lot of four-ring (4R) building units and the appearance of six-ring (6R) building blocks is the signal for crystal formation. (29)Si NMR spectroscopy results suggest that the starting gel is double four-ring (D4R) rich and during crystallization of zeolite A both α and β cages appear. (27)Al NMR spectroscopy results indicate the absence of Al (2Si) species in the starting gel, suggesting the absence of single 4R building units in the starting gel. Furthermore, composition analysis of both solid and liquid samples shows that the solid rather than liquid phase predominates for the crystallization of zeolite A. Therefore, it is proposed that the crystallization of zeolite A mainly occurs in the solid phase by self-assembly or rearrangement starting from the zeolite building units mainly consisting of D4R. The essential role of D4R is directly confirmed by successful conversion from a solution of D4R to zeolite A in the presence of NaCl, and the importance of solid phase is reasonably demonstrated by the successful synthesis of zeolite A from a dry aluminosilicate gel. By considering that the solid phase has a major contribution to crystallization, a novel route was designed to synthesizing zeolite A from the raw materials water glass (Na(2)SiO(3) in aqueous solution) and NaAlO(2), without additional water and NaOH; this route not only simplifies synthetic procedures, but reduces water consumption.  相似文献   

17.
A quasi-pure CH polymorph of microporous zeolite beta, named ECNU-36, was obtained as a highly crystalline silicate using 1,5-bis(tetramethylimidazolium) hydroxide as organic structure-directing agent (OSDA) in fluoride media. An appropriate concentration of free fluoride in the synthetic mother liquor was crucial to purify the CH-phase. The framework structure of ECNU-36 consists of polymorph CH (>95 %) and polymorph B, elucidated by a combination of PXRD data, DIFFaX simulation, EDT, and HRTEM techniques. For the first time, the framework structure of beta CH polymorph was directly confirmed and solved using electron diffraction data. The pure-silica ECNU-36 showed an unusual crystal morphology, composed of stacked nanosheets, with typical 17 nm thickness and exposed {100} facets, which exhibited attractive adsorption performance for hydrocarbons and aromatics.  相似文献   

18.
The intramolecular “inverse” frustrated Lewis pairs (FLPs) of general formula 1-BR2-2-[(Me2N)2C=N]-C6H4 ( 3 – 6 ) [BR2=BMes2 ( 3 ), BC12H8, ( 4 ), BBN ( 5 ), BBNO ( 6 )] were synthesized and structurally characterized by multinuclear NMR spectroscopy and X-ray analysis. These novel types of pre-organized FLPs, featuring strongly basic guanidino units rigidly linked to weakly Lewis acidic boryl moieties via an ortho-phenylene linker, are capable of activating H−H, C−H, N−H, O−H, Si−H, B−H and C=O bonds. 4 and 5 deprotonated terminal alkynes and acetylene to form the zwitterionic borates 1-(RC≡C-BR2)-2-[(Me2N)2C=NH]-C6H4 (R=Ph, H) and reacted with ammonia, BnNH2 and pyrrolidine, to generate the FLP adducts 1-(R2HN→BR2)-2-[(Me2N)2C=NH]-C6H4, where the N-H functionality is activated by intramolecular H-bond interactions. In addition, 5 was found to rapidly add across the double bond of H2CO, PhCHO and PhNCO to form cyclic zwitterionic guanidinium borates in excellent yields. Likewise, 5 is capable of cleaving H2, HBPin and PhSiH3 to form various amino boranes. Collectively, the results demonstrate that these new types of intramolecular FLPs featuring weakly Lewis acidic boryl and strongly basic guanidino moieties are as potent as conventional intramolecular FLPs with strongly Lewis acidic units in activating small molecules.  相似文献   

19.
The combination of nickel metallaphotoredox catalysis, hydrogen atom transfer catalysis, and a Lewis acid activation mode, has led to the development of an arylation method for the selective functionalization of alcohol α‐hydroxy C−H bonds. This approach employs zinc‐mediated alcohol deprotonation to activate α‐hydroxy C−H bonds while simultaneously suppressing C−O bond formation by inhibiting the formation of nickel alkoxide species. The use of Zn‐based Lewis acids also deactivates other hydridic bonds such as α‐amino and α‐oxy C−H bonds. This approach facilitates rapid access to benzylic alcohols, an important motif in drug discovery. A 3‐step synthesis of the drug Prozac exemplifies the utility of this new method.  相似文献   

20.
The cloud point (CP) studies on aqueous solutions of two ethylene oxide-propylene oxide triblock copolymers (EO)2.5(PO)31(EO)2.5 and (EO)13(PO)30(EO)13 with varying number of ethylene oxide (EO) units were carried out in the presence of series of additives, such as alkali, acids, ionic surfactants, alcohols, salts, and hydrotropes. The results of this study show that sodium hydroxide decreases the CP of the two copolymers. Acids increase the CP in the order hydrochloric acid > acetic acid > formic acid for both the triblock copolymers. Hydrotropes increase the CP, whereas salts decrease or increase the CP based on their salting-out/salting-in nature. Alcohols, which are polar organic additives, affect the CP of the two copolymers differently. The change in the CP of the triblock copolymers depends upon the structure and concentration of the additives and on the number of EO units of the two triblock copolymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号