首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 956 毫秒
1.
The aim of this paper is to examine the Dufour and Soret effects on the two-dimensional magnetohydrodynamic (MHD) steady flow of an electrically conducting viscous fluid bounded by infinite sheets. An incompressible viscous fluid fills the porous space. The mathematical analysis is performed in the presence of viscous dissipation, Joule heating, and a first-order chemical reaction. With suitable transformations, the governing partial differential equations through momentum, energy, and concentration laws are transformed into ordinary differential equations. The resulting equations are solved by the homotopy analysis method (HAM). The convergence of the series solutions is ensured. The effects of the emerging parameters, the skin friction coefficient, the Nusselt number, and the Sherwood number are analyzed on the dimensionless velocities, temperature, and concentration fields.  相似文献   

2.
A two-dimensional magnetohydrodynamic boundary layer flow of the Eyring–Powell fluid on a stretching surface in the presence of thermal radiation and Joule heating is analyzed. The Soret and Dufour effects are taken into account. Partial differential equations are reduced to a system of ordinary differential equations, and series solutions of the resulting system are derived. Velocity, temperature, and concentration profiles are obtained. The skin friction coefficient and the local Nusselt and Sherwood numbers are computed and analyzed.  相似文献   

3.
This article studies the Soret and Dufour effects on the magnetohydrodynamic (MHD) flow of the Casson fluid over a stretched surface. The relevant equations are first derived, and the series solution is constructed by the homotopic procedure. The results for velocities, temperature, and concentration fields are displayed and discussed. Numerical values of the skin friction coefficient, the Nusselt number, and the Sherwood number for different values of physical parameters are constructed and analyzed. The convergence of the series solutions is examined.  相似文献   

4.
Dulal Pal 《Meccanica》2009,44(2):145-158
In this paper an analysis has been made to study heat and mass transfer in two-dimensional stagnation-point flow of an incompressible viscous fluid over a stretching vertical sheet in the presence of buoyancy force and thermal radiation. The similarity solution is used to transform the problem under consideration into a boundary value problem of nonlinear coupled ordinary differential equations containing Prandtl number, Schmidt number and Sherwood number which are solved numerically with appropriate boundary conditions for various values of the dimensionless parameters. Comparison of the present numerical results are found to be in excellent with the earlier published results under limiting cases. The effects of various physical parameters on the boundary layer velocity, temperature and concentration profiles are discussed in detail for both the cases of assisting and opposing flows. The computed values of the skin friction coefficient, local Nusselt number and Sherwood number are discussed for various values of physical parameters. The tabulated results show that the effect of radiation is to increase skin friction coefficient, local Nusselt number and Sherwood number.  相似文献   

5.
A numerical solution of the first-order homogeneous chemical reaction in an unsteady free convective flow past a semi-infinite vertical plate is studied. The dimensionless governing equations are solved by an efficient, more accurate, unconditionally stable, and rapidly converging implicit finite-difference scheme. The effect of various parameters, such as the Prandtl number, Schmidt number, buoyancy ratio parameter, and chemical reaction parameter on flow velocity and temperature is determined. The velocity profiles are in excellent agreement with available results in the literature. The local and average values of skin friction and Nusselt and Sherwood numbers are calculated. The effects of the chemical reaction parameters on these values are discussed for both generative and destructive reactions. Owing to the presence of the first-order chemical reaction, the velocity is found to increase in the generative reaction and to decrease in the destructive reaction.  相似文献   

6.
The heat and mass transfer characteristics of natural convection about a vertical surface embedded in a saturated porous medium subjected to a chemical reaction is numerically analyzed, by taking into account the diffusion-thermo (Dufour) and thermal-diffusion (Soret) effects. The transformed governing equations are solved by a very efficient numerical method, namely, a modified version of the Keller-box method for ordinary differential equations. The parameters of the problem are Lewis, Dufour and Soret numbers, sustentation parameter, the order of the chemical reaction n and the chemical reaction parameter γ. Local Nusselt number and local Sherwood number variations and dimensionless concentration profiles in the boundary layer are presented graphically and in tables for various values of problem parameters and it is concluded that γ and n play a crucial role in the solution.  相似文献   

7.
An analysis is performed to study the effects of the chemical reaction and heat generation or absorption on a steady mixed convection boundary layer flow over a vertical stretching sheet with nonuniform slot mass transfer. The governing boundary layer equations with boundary conditions are transformed into the dimensionless form by a group of nonsimilar transformations. Nonsimilar solutions are obtained numerically by solving the coupled nonlinear partial differential equations using the quasi-linearization technique combined with an implicit finite difference scheme. The numerical computations are carried out for different values of dimensionless parameters to display the distributions of the velocity, temperature, concentration, local skin friction coefficient, local Nusselt number, and local Sherwood number. The results obtained indicate that the local Nusselt and Sherwood numbers increase with nonuniform slot suction, but nonuniform slot injection produces the opposite effect. The local Nusselt number decreases with heat generation and increases with heat absorption.  相似文献   

8.
The diffusion‐thermo and thermal‐diffusion effects on heat and mass transfer by mixed convection boundary layer flow over a vertical isothermal permeable surface embedded in a porous medium were studied numerically in the presence of chemical reaction with temperature‐dependent viscosity. The governing nonlinear partial differential equations are transformed into a set of coupled ordinary differential equations, which are solved numerically by using Runge–Kutta method with shooting technique. Numerical results are obtained for the velocity, temperature and concentration distributions, and the local skin friction coefficient, local Nusselt number and local Sherwood number for several values of the parameters, namely, the variable viscosity parameter, suction/injection parameter, Darcy number, chemical reaction parameter, and Dufour and Soret numbers. The obtained results are presented graphically and in tabulated form, and the physical aspects of the problem are discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
An analysis has been developed to study the unsteady free convection flow of an incompressible visco-elastic fluid on a continuously moving vertical porous plate in the presence of a first-order chemical reaction. The governing equations are solved numerically using an implicit finite difference technique. The obtained numerical solutions are compared with the analytical solutions. The velocity profiles are presented. A parametric analysis is performed to illustrate the influences of the visco-elastic parameter, the dimensionless chemical reaction parameter, and the plate moving velocity on the steady state velocity profiles, the time dependent friction coefficient, the Nusselt number, and the Sherwood number.  相似文献   

10.
An analysis is presented to investigate the effects of temperature-dependent viscosity, thermal dispersion, Soret number and Dufour number on non-Darcy MHD free convective heat and mass transfer of a viscous, incompressible and electrically conducting fluid past a vertical isothermal surface embedded in a saturated porous medium. The governing partial differential equations are transferred into a system of ordinary differential equations, which are solved numerically using a fourth order Runge–Kutta scheme with the shooting method. Comparisons with previously published work by Hong and Tien [Hong, J. T. and Tien, C. L.: 1987, Int. J. Heat Mass Transfer 30, 143–150] and Sparrow et al. [Sparrow, E. M. et al.: 1964, AIAA J. 2 652–659] are performed and good agreement is obtained. Numerical results of the skin friction coefficient, the local Nusselt number and the local Sherwood number as well as the velocity, temperature and concentration profiles are presented for different physical parameters.  相似文献   

11.
Numerical solutions of magnetodynamics(MHD) effects on the free convective flow of an incompressible viscous fluid past a moving semi-infinite vertical cylinder with temperature oscillation are presented.The dimensionless,unsteady,non-linear,and coupled governing partial differential equations are solved by using an implicit finite difference method of the Crank-Nicolson type.The velocity,temperature,and concentration profiles are studied for various parameters.The local skin-friction,the average skin-fr...  相似文献   

12.
A mathematical model will be analyzed in order to study the effects of variables viscosity and thermal conductivity on unsteady heat and mass transfer over a vertical wavy surface in the presence of magnetic field numerically by using a simple coordinate transformation to transform the complex wavy surface into a flat plate. The fluid viscosity is assumed to vary as a exponential function of temperature and thermal conductivity is assumed to vary linearly with temperature. An implicit marching Chebyshev collocation scheme is employed for the analysis. Numerical solutions are obtained for different values of variable viscosity, variable thermal conductivity and MHD variation parameter. Numerical results show that, variable viscosity, variable thermal conductivity and MHD variation parameter have significant influences on the velocity, temperature and concentration profiles as well as for the local skin friction, Nusselt number and Sherwood number.  相似文献   

13.
Dufour and Soret effects on flow at a stagnation point in a fluid-saturated porous medium are studied in this paper. A two dimensional stagnation-point flow with suction/injection of a Darcian fluid is considered. By using an appropriate similarity transformation, the boundary layer equations of momentum, energy and concentration are reduced to a set of ordinary differential equations, which are solved numerically using the Keller-box method, which is a very efficient finite differences technique. Nusselt and Sherwood numbers are obtained, together with the velocity, temperature and concentration profiles in the boundary layer. For the large suction case, asymptotic analytical solutions of the problem are obtained, which compare favourably with the numerical solutions. A critical view of the problem is presented finally.  相似文献   

14.
The effects of Joule-heating, chemical reaction and thermal radiation on unsteady MHD natural convection from a heated vertical porous plate in a micropolar fluid are analyzed. The partial differential equations governing the flow and heat and mass transfer have been solved numerically using an implicit finite-difference scheme. The case corresponding to vanishing of the anti-symmetric part of the stress tensor that represents weak concentrations is considered. The numerical results are validated by favorable comparisons with previously published results. A parametric study of the governing parameters, namely the magnetic field parameter, suction/injection parameter, radiation parameter, chemical reaction parameter, vortex viscosity parameter and the Eckert number on the linear velocity, angular velocity, temperature and the concentration profiles as well as the skin friction coefficient, wall couple stress coefficient, Nusselt number and the Sherwood number is conducted. A selected set of numerical results is presented graphically and discussed.  相似文献   

15.
对纳米流体在伸/缩楔体上的磁流体(MHD)流动进行了数值研究。首先,通过相似变换将控制偏微分方程转化为非线性常微分方程组;然后,利用Matlab软件,借助打靶法,结合四阶五常龙格库塔迭代方案进行数值求解;最后,详细讨论了各控制参数对无量纲速度、温度、浓度、表面摩擦系数、局部Nusselt数和局部Sherwood数的影响。结果表明,楔体在拉伸情况下只有唯一解,理论上不会出现边界层分离;而在一定收缩强度范围内存在双解,边界层流动在壁面处可能会出现边界层分离,壁面抽吸会使边界层分离推迟;楔体在拉伸情况下,磁场参数对表面摩擦系数的影响较大,对局部Nusselt数和局部Sherwood数的影响较小。  相似文献   

16.
This work is focused on the numerical modeling of steady, laminar, heat and mass transfer by MHD mixed convection from a semi-infinite, isothermal, vertical and permeable surface immersed in a uniform porous medium in the presence of thermal radiation and Dufour and Soret effects. A mixed convection parameter for the entire range of free-forced-mixed convection is employed and the governing equations are transformed into non-similar equations. These equations are solved numerically by an efficient, implicit, iterative, finite-difference scheme. The obtained results are checked against previously published work on special cases of the problem and are found to be in excellent agreement. A parametric study illustrating the influence of the thermal radiation coefficient, magnetic field, porous medium inertia parameter, concentration to thermal buoyancy ratio, and the Dufour and Soret numbers on the fluid velocity, temperature and concentration as well as the local Nusselt and the Sherwood numbers is conducted. The obtained results are shown graphically and the physical aspects of the problem are discussed.  相似文献   

17.
A steady stagnation-point flow of an incompressible Maxwell fluid towards a linearly stretching sheet with active and passive controls of nanoparticles is studied numerically. The momentum equation of the Maxwell nanofluid is inserted with an external velocity term as a result of the flow approaches the stagnation point. Conventional energy equation is modified by incorporation of nanofluid Brownian and thermophoresis effects. The condition of zero normal flux of nanoparticles at the stretching surface is defined to impulse the particles away from the surface in combination with nonzero normal flux condition. A hydrodynamic slip velocity is also added to the initial condition as a component of the entrenched stretching velocity. The governing partial differential equations are then reduced into a system of ordinary differential equations by using similarity transformation. A classical shooting method is applied to solve the nonlinear coupled differential equations. The velocity, temperature and nanoparticle volume fraction profiles together with the reduced skin friction coefficient, Nusselt number and Sherwood number are graphically presented to visualize the effects of particular parameters. Temperature distributions in passive control model are consistently lower than in the active control model. The magnitude of the reduced skin friction coefficient, Nusselt number and Sherwood number decrease as the hydrodynamic slip parameter increases while the Brownian parameter has negligible effect on the reduced heat transfer rate when nanoparticles are passively controlled at the surface. It is also found that the stagnation parameter contributes better heat transfer performance of the nanofluid under both active and passive controls of normal mass flux.  相似文献   

18.
The present investigation, involving the simultaneous heat and mass transfer is concerned with a numerical study of transient natural convection flow past an impulsively started inclined plate. Crank-Nicolson implicit finite difference method is used to solve the unsteady, non-linear and coupled governing equations. In order to check the accuracy of the numerical results, the present study is compared with available exact solution and are found to be in good agreement. Numerical results are obtained for various parameters. The steady-state velocity, temperature and concentration profiles, local and average skin friction, local and average Nusselt number, local and average Sherwood number are shown graphically. It is observed that local wall shear stress decreases as an angle of inclination { decreases.  相似文献   

19.
O. D. Makinde 《Meccanica》2012,47(5):1173-1184
This paper examined the hydromagnetic mixed convection stagnation point flow towards a vertical plate embedded in a highly porous medium with radiation and internal heat generation. The governing boundary layer equations are formulated and transformed into a set of ordinary differential equations using a local similarity approach and then solved numerically by shooting iteration technique together with Runge-Kutta sixth-order integration scheme. A representative set of numerical results are displayed graphically and discussed quantitatively to show some interesting aspects of the pertinent parameters on the dimensionless axial velocity, temperature and the concentration profiles, local skin friction, local Nusselt number and local Sherwood number, the rate of heat and mass transfer. Good agreement is found between the numerical results of the present paper with the earlier published works under some special cases.  相似文献   

20.
A problem motivated by the investigation of the heat and mass transfer in the unsteady magnetohydrodynamic(MHD) flow of blood through a vessel is solved numerically when the lumen of the vessel has turned into the porous structure.The time-dependent permeability and the oscillatory suction velocity are considered.The computational results are presented graphically for the velocity,the temperature,and the concentration fields for various values of skin friction coefficients,Nusselt numbers,and Sherwood numbers.The study reveals that the flow is appreciably influenced by the presence of a magnetic field and also by the value of the Grashof number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号