首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   3篇
力学   2篇
数学   2篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2016年   2篇
  2004年   2篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
以微观试验和流变性能试验为手段,分别研究零电场下和在电场作用下的电流变液体黏性变化规律.研究结果表明:零电场下电流变液体的黏性与Krieger-Dougherty公式具有很好的拟合效果,其中逾渗临界值强依赖于悬浮液体中固体颗粒的性质并随工作温度变化.在电场作用下,电流变悬浮液体的黏度随剪切速率的变化规律分为3个阶段:即呈线性的启动段、非线性的幂定律模型流动段和宾汉模型流动段.研究结果为电流变效应工程应用提供依据.  相似文献   
2.
用溶胶凝胶法合成了纳米尺寸Y2O3掺杂的TiO3粒子材料,将材料在不同温度下灼烧得到5种电流变(ER)材料。通过X射线粉末衍射(XRD)分析确定了材料的晶体结构,用元素分析、热重分析和XRD分析确定了材料的组成,分别研究了各粒子材料与甲基硅油混合(25%,质量分数)组成电流变液(ERF),5种ERF的ER性能以及介电常数(ε)、介电损失(tanδ)。  相似文献   
3.
熔体粘度对熔盐电解过程中金属与熔盐的有效分离、炉膛及电极寿命等具有显着影响。因此,运用旋转法对制取Dy-Cu合金的LiF-DyF_3-Dy_2O_3-Cu_2O熔盐体系粘度进行了研究。考察了温度、单一氧化物(Dy_2O_3或Cu_2O)及混合氧化物(Dy_2O_3与Cu_2O)添加对熔盐体系粘度的影响。同时,通过Arrehnius公式验证了熔盐粘度与温度的关系,计算并分析了粘度活化能的变化规律。研究结果表明:在温度为910~1030℃范围内, LiF-DyF_3熔盐体系的粘度均随着温度的升高及单一氧化物(Dy_2O_3或Cu_2O)添加量的增大而降低,随熔盐中Cu_2O与Dy_2O_3质量比的增大而升高;粘度活化能随单一氧化物(Dy_2O_3或Cu_2O)添加量的增大而增大。熔盐电解制备Dy-Cu合金适宜温度为970~1000℃,W_((Cu_2O))+W_((Dy_2O_3))=2.0%(质量分数)且W_((Cu_2O))∶W_((Dy_2O_3))比值为1∶0.5。  相似文献   
4.
对纳米流体在伸/缩楔体上的磁流体(MHD)流动进行了数值研究。首先,通过相似变换将控制偏微分方程转化为非线性常微分方程组;然后,利用Matlab软件,借助打靶法,结合四阶五常龙格库塔迭代方案进行数值求解;最后,详细讨论了各控制参数对无量纲速度、温度、浓度、表面摩擦系数、局部Nusselt数和局部Sherwood数的影响。结果表明,楔体在拉伸情况下只有唯一解,理论上不会出现边界层分离;而在一定收缩强度范围内存在双解,边界层流动在壁面处可能会出现边界层分离,壁面抽吸会使边界层分离推迟;楔体在拉伸情况下,磁场参数对表面摩擦系数的影响较大,对局部Nusselt数和局部Sherwood数的影响较小。  相似文献   
5.
首次利用柱坐标研究速度滑移和对流表面边界条件下,由拉伸缸引起的稳态层流Casson纳米流体流动、传热及传质现象.采用恰当的相似变换将偏微分控制方程转化为高阶非线性耦合常微分方程,并通过打靶法进行数值求解,图示并详细分析了不同物理参数对速度、温度及浓度分布的影响.结果显示,速度受滑移参数的影响较大,温度和浓度分别受Biot数和Lewis数的影响较大;随着Casson参数的增大,速度下降而温度和浓度都增加;温度随着Brown(布朗)运动参数或热泳参数的增加而上升;浓度随着Brown运动参数的增大而减小,随着热泳参数的增大而增大,当热泳参数较大时,浓度出现了"回流"现象.  相似文献   
6.
研究了多孔介质中带二阶滑移边界的不可压缩MHD粘性流体在可渗透指数延伸壁面上的驻点流问题.通过相似变换将描述驻点流的控制方程转换为非线性常微分方程,并利用MATLAB的bvp5c函数求解非线性问题.分析并讨论了一、二阶滑移参数,抽吸/喷注参数以及渗透参数对速度分布和壁面剪切力的影响.结果显示在多孔介质中当壁面延伸速度小于外界主流速度时,随着一阶滑移参数、二阶滑移参数绝对值、抽吸/喷注参数以及渗透参数的增大,速度增大,壁面剪切力减小且均为正数;而当壁面延伸速度大于外界主流速度时形成一个反边界层,速度减小,壁面剪切力绝对值也减小且均为负数;二阶滑移参数对速度剖面和壁面剪切力的影响略大于一阶滑移参数的影响,抽吸/喷注参数对速度剖面和壁面剪切力的影响明显大于渗透参数或磁场参数的影响.  相似文献   
7.
以LiF-DyF_(3)为熔盐,电解Dy_(2)O_(3),Cu_(2)O制备Dy-Cu合金过程中,明确Dy_(2)O_(3),Cu_(2)O溶解度是制定合理加料制度、提高电解效率的关键。采用等温饱和法研究了Dy_(2)O_(3),Cu_(2)O溶解平衡时间,考察了温度、DyF_(3)浓度对单一氧化物(Dy_(2)O_(3)或Cu_(2)O)及混合氧化物(Dy_(2)O_(3)与Cu_(2)O)溶解度的影响,通过最小二乘法对溶解度数据进行了拟合,建立了温度、DyF_(3)浓度与Dy_(2)O_(3),Cu_(2)O溶解度之间的数学回归方程。研究结果表明,Dy_(2)O_(3),Cu_(2)O在LiF-DyF_(3)熔盐中溶解平衡的时间分别为110,120 min,溶解反应为吸热反应。相同温度下,随熔盐中DyF_(3)浓度增大,Dy_(2)O_(3)的溶解度逐渐增大,Cu_(2)O溶解度变化较小;在温度为910~1030℃,熔盐中DyF_(3)浓度为15%~40%(摩尔分数)时,Dy_(2)O_(3),Cu_(2)O溶解度分别为0.55%~3.45%,0.39%~0.52%。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号