首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The behavior of charge and spin persistent currents in an integrable lattice ring of strongly correlated electrons with a magnetic impurity is exactly studied. Our results manifest that the oscillations of charge and spin persistent currents are similar to the ones, earlier obtained for integrable continuum models with a magnetic impurity. The difference is due to two (instead of one) Fermi velocities of low-lying excitations. The form of oscillations in the ground state is “saw-tooth”-like, generic for any multi-particle coherent one-dimensional models. The integrable magnetic impurity introduces net charge and spin chiralities in the generic integrable lattice system, which determine the initial phase shifts of charge and spin persistent currents. We show that the magnitude of the charge persistent current in the generic Kondo situation does not depend on the parameters of the magnetic impurity, unlike the (magneto)resistivity of transport currents. Received 30 January 2003 / Received in final form 12 March 2003 Published online 11 April 2003 RID="a" ID="a"e-mail: zvyagin@fy.chalmers.se  相似文献   

2.
We study conductance and adiabatic pumped charge and spin currents in a graphene quantum pump with Corbino geometry in the presence of an applied perpendicular magnetic field. Pump is driven by the periodic and out of phase modulations of the magnetic field and an electrostatic potential applied to the ring area of the pump. We show that Zeeman splitting, despite its smallness, suppresses conductance and pumped current oscillations at zero doping. Moreover, quite considerable spin conductance and pumped spin current are generated at low dopings due to Zeeman splitting. We find that pumped charge and spin currents increase by increasing the magnetic field, with small oscillations, until they are suppressed due to the effect of nonzero doping and Zeeman splitting.  相似文献   

3.
He Gao 《Physics letters. A》2008,372(35):5695-5700
We have investigated the mesoscopic transport properties of a quantum dot embedded Aharonov-Bohm (AB) interferometer applied with a rotating magnetic field. The spin-flip effect is induced by the rotating magnetic field, and the tunneling current is sensitive to the spin-flip effect. The spin-flipped electrons tunneling from the direct channel and the resonant channel interfere with each other to form spin-polarized tunneling current components. The non-resonant tunneling (direct transmission) strength and the AB phase φ play important roles. When the non-resonant tunneling (background transmission) exists, the spin and charge currents form asymmetric peaks and valleys, which exhibit Fano-type line shapes by varying the source-drain bias voltage, or gate voltage. The AB oscillations of the spin and charge currents exhibit distinct dependence on the magnetic flux and direct tunneling strength.  相似文献   

4.
The distributions of spin and currents modulated by magnetic field in a transverse parabolic confined two-dimensional electronic system with a Rashba spin--orbit coupling have been studied numerically. It is shown that the spin accumulation and the spin related current are generated by magnetic field if the spin--orbit coupling is presented. The distributions of charge and spin currents are antisymmetrical along the cross-section of confined system. A transversely applied electric field does not influence the characteristic behaviour of charge- and spin-dependent properties.  相似文献   

5.
李昕 《中国物理快报》2008,25(11):3852-3855
We point out that the time-dependent gauge transformation technique may be effective in investigating the nonadiabatic geometric phase of a subsystem in a composite system. As an example, we consider two uniaxially coupled spin -1/2 particles with one of particles driven by rotating magnetic field. The influences of coupling and precession frequency of the magnetic field on geometric phase are also discussed in detail.  相似文献   

6.
K Bakke  H Belich 《理论物理通讯》2020,72(10):105204-102
We investigate quantum effects on a nonrelativistic neutral particle with a permanent magnetic dipole moment that interacts with an electric field. This neutral particle is also under the influence of a background that breaks the Lorentz symmetry. We focus on the Lorentz symmetry violation background determined by a space-like vector field. Then, we show that the effects of the violation of Lorentz symmetry can yield an attractive Coulomb-type potential. Furthermore, we obtain the bound state solutions to the Schrödinger-Pauli equation and show that the spectrum of energy is a function of the Aharonov-Casher geometric quantum phase. Finally, we discuss the arising of persistent spin currents.  相似文献   

7.
By analysing the behaviour of a neutral particle with permanent magnetic dipole moment confined to a quantum dot in the presence of a radial electric field, Coulomb-type and linear confining potentials, then, an Aharonov–Bohm-type effect for bound states and a dependence of the angular frequency of the system on the Aharonov–Casher geometric phase and the quantum numbers associated with the radial modes, the angular momentum and the spin are obtained. In particular, the possible values of the angular frequency and the persistent spin currents associated with the ground state are investigated in two different cases.  相似文献   

8.
Spin-polarized transport through a coupled double-dot   总被引:1,自引:0,他引:1  
We investigate the quantum transport through a mesoscopic device consisting of an open, lateral double-quantum-dot coupled by time oscillating and spin-polarization dependent tunneling which results from a static magnetic field applied in the tunneling junction. In the presence of a non-vanishing bias voltage applied to two attached macroscopic leads both spin and charge currents are driven through the device. We demonstrate that the spin and charge currents are controllable by adjusting the gate voltage, the frequency of driving field and the magnitude of the magnetic field as well. An interesting resonance phenomenon is observed.  相似文献   

9.
We examine both quantum and classical versions of the problem of spin evolution in a slowly varying magnetic field. Main attention is given to the first- and second-order adiabatic corrections in the case of in-plane variations of the magnetic field. While the first-order correction relates to the usual adiabatic Berry phase and Coriolis-type lateral deflection of the spin, the second-order correction is shown to be responsible for the next-order geometric phase and in-plain deflection. A comparison between different approaches, including the exact (non-adiabatic) geometric phase, is presented.  相似文献   

10.
存在自旋轨道耦合的介观小环中的持续自旋流   总被引:1,自引:0,他引:1  
孙庆丰  谢心澄  王健 《物理》2007,36(11):813-816
文章作者研究了存在自旋轨道耦合的介观小环的平衡态性质.此前人们已经知道,在有磁通穿过的介观小环中,绕环运动的电子会产生一附加的Berry相位而导致持续电流;同样地,在仅有自旋轨道耦合的体系中,电子绕环运动也应当会产生附加的自旋Berry相位,进而驱动持续自旋流.文章作者通过对一个有正常区和自旋轨道耦合区的复合小环的计算,结果表明,无电流伴随的纯持续自旋流的确存在.文章作者指出,这持续自旋流描述真实的自旋运动,并且它能被实验观测.  相似文献   

11.
We investigate the equilibrium property of a mesoscopic ring with a spin-orbit interaction. It is well known that, for a normal mesoscopic ring threaded by a magnetic flux, the electron acquires a Berry phase that induces the persistent (charge) current. Similarly, the spin of an electron acquires a spin Berry phase traversing a ring with a spin-orbit interaction. It is this spin Berry phase that induces a persistent spin current. To demonstrate its existence, we calculate the persistent spin current without an accompanying charge current in the normal region in a hybrid mesoscopic ring. We point out that this persistent spin current describes the real spin motion and can be observed experimentally.  相似文献   

12.
A quantum effect characterized by a dependence of the angular frequency associated with the confinement of a neutral particle to a quantum ring on the quantum numbers of the system and the Aharonov–Casher geometric phase is discussed. Then, it is shown that persistent spin currents can arise in a two-dimensional quantum ring in the presence of a Coulomb-type potential. A particular contribution to the persistent spin currents arises from the dependence of the angular frequency on the geometric quantum phase.  相似文献   

13.
We calculate current and density distributions in stripe (2D planar) junctions between normal and Majorana nanowires having a finite (y) transverse length. In presence of a magnetic field with vertical and in-plane components, the y-symmetry of the charge current distribution in the normal lead changes strongly across the Majorana phase transition: from center-symmetric if a Majorana mode is present to laterally-shifted (as expected by the Hall effect) if the field is tilted such as to destroy the Majorana mode due to the projection rule. We compare quasi-particle and charge distributions of current and density, as well as spin magnetizations. The Majorana mode causes opposite spin accumulations on the transverse sides of the junction and the emergence of a spin current.  相似文献   

14.
In the tight-binding approximation, we have investigated the behaviour of persistent currents in a one-dimensional Thue-Morse mesoscopic ring threaded by a magnetic flux. By applying a transfer-matrix technique, the energy spectra and the persistent currents in the system have been numerically calculated. It is shown that the flux-dependent eigenenergies form “band” structures and the energy gaps will enlarge if the site energy increases. Actually, the site energy and the filling-up number of electrons are two important factors which have much influence upon the persistent current. Increment of the site energy in the system will lead to a dramatic suppression of the currents. When the highest-occupied energy level is on the top of the band, the total current is limited; otherwise, the persistent current increases by several orders of magnitude. Generally, this kind of large scale change in the magnitude of the current can easily be observed in the vicinity of band gaps. The parity effect in the Thue-Morse ring is also discussed. Received 22 January 2001 and Received in final form 25 October 2001  相似文献   

15.
We calculate the persistent charge and spin polarization current inside a finite-width quantum ring of realistic geometry as a function of the strength of the Rashba or Dresselhaus spin-orbit interaction. The time evolution in the transient regime of the two-dimensional (2D) quantum ring connected to electrically biased semi-infinite leads is governed by a time-convolutionless non-Markovian generalized master equation. The electrons are correlated via Coulomb interaction. In addition, the ring is embedded in a photon cavity with a single mode of linearly polarized photon field, which is polarized either perpendicular or parallel to the charge transport direction. To analyze carefully the physical effects, we compare to the analytical results of the toy model of a one-dimensional (1D) ring of non-interacting electrons with spin-orbit coupling. We find a pronounced charge current dip associated with many-electron level crossings at the Aharonov-Casher phase ΔΦ = π, which can be disguised by linearly polarized light. Qualitative agreement is found for the spin polarization currents of the 1D and 2D ring. Quantitatively, however, the spin polarization currents are weaker in the more realistic 2D ring, especially for weak spin-orbit interaction, but can be considerably enhanced with the aid of a linearly polarized electromagnetic field. Specific spin polarization current symmetries relating the Dresselhaus spin-orbit interaction case to the Rashba one are found to hold for the 2D ring, which is embedded in the photon cavity.  相似文献   

16.
We study the effect of dimerization of TMTSF molecules and the effect of magnetic field (Zeeman splitting) on the phase competition in quasi one-dimensional organic superconductors (TMTSF)2X by applying the random phase approximation method. As for the dimerization effect, we conclude that due to the decrease of the dimerization, which corresponds to applying the pressure and cooling, spin and charge density wave states are suppressed and give way to a superconducting state. As for the magnetic field effect, we find generally that spin-triplet pairing mediated by a coexistence of 2kF spin and 2kF charge fluctuations can be strongly enhanced by applying magnetic field rather than triplet pairing due to a ferromagnetic spin fluctuations. Applying the above idea to (TMTSF)2X compounds, a magnetic field induced singlet-triplet transition is consistent with above mechanism in (TMTSF)2ClO4.  相似文献   

17.
A two-dimensional electron gas exposed to a tilted magnetic field is considered with the Rashba spin–orbit interaction and the Zeeman effect. An exact solution for the eigenvalues was obtained assuming that two opposite spin states of adjacent Landau levels have equal probability. No crossings between adjacent eigenenergies were observed, for the tilt angles studied here (θ80°), unlike in the perpendicular-magnetic-field case. The absence of crossings leads to quenched beating structures in the oscillations of the density of states (DOS). Persistent spin-splittings were observed at the weak magnetic field region. The splittings, however, can be effectively screened by an increased Landau level broadening. The results shed light on how spins can be controlled through the Rashba interaction strength, the disorder-related broadening and the magnetic field tilt angle.  相似文献   

18.
The magnetization dynamics in magnetic double layers is affected by spin-pump and spin-sink effects. So far, only the spin pumping and its effect on the magnetic damping has been studied. However, due to conservation of angular momentum this spin current also leads to magnetic excitation of the layer dissipating this angular momentum. In this Letter we use time resolved magneto-optic Kerr effect to directly show the excitation due to the pure spin current. In particular, we observe magnetization dynamics due to transfer of angular momentum in magnetic double layers. In contrast to other experiments where a spin polarized charge current is passed through a nanomagnet, the effects discussed in this Letter are based on pure spin currents without net transfer of electric charge.  相似文献   

19.
A graphene nanoribbon with armchair edges is known to have no edge state. However, if the nanoribbon is in the quantum spin Hall state, then there must be helical edge states. By folding a graphene ribbon into a ring and threading it by a magnetic flux, we study the persistent charge and spin currents in the tight-binding limit. It is found that, for a broad ribbon, the edge spin current approaches a finite value independent of the radius of the ring. For a narrow ribbon, inter-edge coupling between the edge states could open the Dirac gap and reduce the overall persistent currents. Furthermore, by enhancing the Rashba coupling, we find that the persistent spin current gradually reduces to zero at a critical value beyond which the graphene is no longer a quantum spin Hall insulator.  相似文献   

20.
The geometric phase of the bipartite Heisenberg spin-1/2 system with one spin driven by rotating magnetic field is investigated. It is found that in the one-site drive case, the intersubsystem coupling can be equivalent to a static quasi-magnetic field in the parameter space. This perspective has satisfactorily explained the irregular asymptote effect of geometric phase. We discuss the property of the two-site magnetic drive spin system and discover that a stationary state with no geometric phase shift is generated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号