首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We report on what is to our knowledge the first optical parametric oscillator (OPO) pumped by microsecond pulses from a wavelength-tunable solid-state laser. The singly resonant OPO (SRO) is based on a periodically poled LiNbO3 crystal and pumped with 2.1-micros-long pulses from an actively Q-switched Yb fiber laser. At an average fiber laser power of 3.6 W, the SRO generates 1.9-micros-long pulses with a repetition rate of 25 kHz and an average power of 560 mW at 3360 nm. The SRO was tuned from 1518 to 1634 nm (signal) and from 3145 to 3689 nm (idler) via the crystal temperature and poling period. By all-electronic tuning of the fiber laser wavelength over 19 nm, tuning of the mid-infrared idler wavelength over 195 nm was achieved.  相似文献   

2.
We report a continuous-wave, doubly resonant optical parametric oscillator (OPO) based on the nonlinear material periodically poled KTiOPO(4) and its application to spectroscopy. The OPO, which is pumped by a diode-pumped frequency-doubled Nd:YLF laser at 523 nm, has a low pump-power threshold of 25 mW and can deliver 10 mW of single-frequency output at 1.65 mum for a pump power of 200 mW. The idler wavelength can be temperature tuned at a rate of 0.73 nm/( degrees )C , and smooth tuning of the output frequency over ~3 GHz is achieved by smooth tuning of the pump laser. We demonstrate the practicality of the OPO by recording the absorption spectrum of methane near 1649 nm.  相似文献   

3.
We report a continuous-wave optical parametric oscillator (OPO) based on periodically poled RbTiOAsO(4) (PPRTA). The singly resonant OPO, which is located within a Ti:sapphire laser, has a high-finesse signal cavity and delivers a maximum output power of 270 mW to the nonresonant idler wave at 2.92mum , through a 4.5-mm PPRTA crystal. For room-temperature operation and a crystal with a 30-mu;m grating period, pump tuning over 838-848 nm results in OPO tuning over 1.13-1.27mum (signal) and 2.53-3.26mum (idler), limited by the bandwidth of optical coatings. PPRTA exhibits thermal properties superior to those of periodically poled LiNbO(3) .  相似文献   

4.
We report a high-power picosecond optical parametric oscillator (OPO) synchronously pumped by a Yb fiber laser at 1.064 μm, providing 11.7 W of total average power in the near to mid-IR at 73% extraction efficiency. The OPO, based on a 50 mm MgO:PPLN crystal, is pumped by 20.8 ps pulses at 81.1 MHz and can simultaneously deliver 7.1 W of signal at 1.56 μm and 4.6 W of idler at 3.33 μm for 16 W of pump power. The oscillator has a threshold of 740 mW, with maximum signal power of 7.4 W at 1.47 μm and idler power of 4.9 W at 3.08 μm at slope efficiencies of 51% and 31%, respectively. Wavelength coverage across 1.43-1.63 μm (signal) and 4.16-3.06 μm (idler) is obtained, with a total power of ~11 W and an extraction efficiency of ~68%, with pump depletion of ~78% maintained over most of the tuning range. The signal and idler output have a single-mode spatial profile and a peak-to-peak power stability of ±1.8% and ±2.9% over 1 h at the highest power, respectively. A signal pulse duration of 17.3 ps with a clean single-peak spectrum results in a time-bandwidth product of ~1.72, more than four times below the input pump pulses.  相似文献   

5.
A few‐cycle, broadband, singly‐resonant optical parametric oscillator (OPO) for the mid‐infrared based on MgO‐doped periodically‐poled LiNbO3 (MgO:PPLN), synchronously pumped by a 20‐fs Ti:sapphire laser is reported. By using crystal interaction lengths as short as 250 µm, and careful dispersion management of input pump pulses and the OPO resonator, near‐transform‐limited, few‐cycle idler pulses tunable across the mid‐infrared have been generated, with as few as 3.7 optical cycles at 2682 nm. The OPO can be continuously tuned over 2179‐3732 nm (4589‐2680 cm‐1) by cavity delay tuning, providing up to 33 mW of output power at 3723 nm. The idler spectra exhibit stable broadband profiles with bandwidths spanning over 422 nm (FWHM) recorded at 3732 nm. The effect of crystal length on spectral bandwidth and pulse duration is investigated at a fixed wavelength, confirming near‐transform‐limited idler pulses for all grating interaction lengths. By locking the repetition frequency of the pump laser to a radio‐frequency reference, and without active stabilization of the OPO cavity length, an idler power stability better than 1.6% rms over >2.75 hours is obtained when operating at maximum output power, in excellent spatial beam quality with TEM00 mode profile. Photograph shows a multigrating MgO:PPLN crystal used as a nonlinear gain medium in the few‐cycle femtosecond mid‐IR OPO. The visible light is the result of non‐phase‐matched sum‐frequency mixing between the interacting beams.  相似文献   

6.
We report on rapid, all-electronically controlled wavelength tuning of a continuous-wave (cw) optical parametric oscillator (OPO) pumped by an ytterbium fiber laser. The OPO is singly resonant for the signal wave and consists of a 40-mm-long periodically poled lithium niobate crystal in a four-mirror ring cavity. By tuning of the fiber-laser wavelength over 33 nm through an intracavity acousto-optic tunable filter, the OPO idler wavelength is tuned from 3160 to 3500 nm in 330 micros, corresponding to an idler frequency-tuning speed of 28 THz/ms. At a fiber-laser power of 6.6 W at 1074 nm, the singly resonant OPO generates 1.13-W cw idler radiation at 3200 nm.  相似文献   

7.
The performance characteristics of a doubly (signal and idler) resonant continuous-wave optical parametric oscillator based on periodically poled lithium niobate and pumped by a 100-mW single-mode laser diode at 810 nm are reported. Pump power thresholds as low as 16 mW and wavelength tuning over the range 1.15-1.25 microm at the signal and 2.31-2.66 microm at the idler were achieved through variation of crystal temperature, pump wavelength, and grating period. Up to 5 mW of signal output was obtained with the single-mode diode pump, and signal powers of up to 39 mW were obtained when pumping with a 400-mW injection-locked broad-area diode laser.  相似文献   

8.
The operation and characterization of a high-repetition-rate singly-resonant picosecond optical parametric oscillator based on the non-linear material KTiOAsO4 and synchronously pumped by a Kerr-lens-mode-locked Ti:sapphire laser at 81 MHz is described. By utilizing non-critical type II phase-matching in a 10 mm crystal, average near-infrared output powers of 403 mW have been generated at 31% extraction efficiency. The oscillator exhibits a pump power threshold of 230 mW and with the available mirror set can provide signal tuning over 1.116–1.281 μm and idler tuning over 2.260–3.160 μm by tuning the pump wavelength over 770–896 nm. Without dispersion compensation, near-transform-limited signal pulses with durations of 1.01–1.03 ps and idler pulses with 1.61–2.91 ps duration have been obtained for 1.2 ps input pump pulses. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

9.
报道了一个低阈值宽调谐、被动调Q、单谐振掺MgO的周期性极化铌酸锂晶体(PPMgLN)光学参量振荡器。利用被动调Q的Nd:YVO4激光器作为泵浦源,采用外腔结构,在室温下,实现了PPMgLN晶体的准相位匹配光学参量振荡。光参量振荡的阈值仅为0.27W(单脉冲能量4.5μJ、脉宽35ns);在泵浦光为1.35W(脉冲能量8.2μJ、脉宽35ns),PPMgLN周期为31μm时,获得了161.9mW,3.202μm脉冲激光输出;同时获得了98.5mW的1.594μm信号光输出,总的光光转化效率达到19.3%。通过改变晶体的周期,实现了闲频光3.13~4.19μm,信号光1.43~1.65μm的宽带可调谐激光输出。  相似文献   

10.
We present a 532 nm-pumped singly-resonant cw optical parametric oscillator based on MgO-doped PPLN with a minimum threshold pump power of 0.3 W. The OPO with a two-mirror standing-wave cavity is optimized by using a tunable diode laser on the path of the resonant signal beam. The maximum output power is 200 mW at an idler wavelength near 1330 nm at a pump power of 2 W. We report the degradation of the output power and beam characteristics at high pump power indicating a strong thermal lensing in the crystal. The continuous tuning range of the OPO is measured to be 800 MHz which is close to 90% of the free spectral range of the OPO cavity.  相似文献   

11.
We report a femtosecond optical parametric oscillator (OPO) based on the nonlinear material BiB3O6. The OPO is synchronously pumped in the blue by the second harmonic of a Kerr-lens-mode-locked Ti:sapphire laser. It can provide wide and continuous tuning across the entire green-yellow-orange-red spectral range with a single crystal and a single set of mirrors. Using a 500 microm BiB3O6 crystal and collinear type I (e+e->o) phase matching in the optical yz plane, a signal wavelength range of 480-710 nm is demonstrated with angle tuning at room temperature at average output powers of 270 mW. With 220 fs blue pump pulses, near-transform-limited signal pulses of 120 fs duration have been obtained at 76 MHz repetition rate.  相似文献   

12.
We report a cw optical parametric oscillator (OPO) in a novel architecture comprising two nonlinear crystals in a single cavity, providing two independently tunable pairs of signal and idler wavelengths. Based on a singly resonant oscillator design, the device permits access to arbitrary signal and idler wavelength combinations within the parametric gain bandwidth and reflectivity of the OPO cavity mirrors. Using two identical 30 mm long MgO:sPPLT crystals in a compact four-mirror ring resonator pumped at 532 nm, we generate two pairs of signal and idler wavelengths with arbitrary tuning across 850-1430 nm, and demonstrate a frequency separation in the resonant signal waves down to 0.55 THz. Moreover, near wavelength-matched condition, coherent energy coupling between the resonant signal waves, results in reduced operation threshold and increased output power. A total output power >2.8 W with peak-to-peak power stability of 16% over 2 h is obtained.  相似文献   

13.
We report on what is to our knowledge the first continuous-wave (cw) optical parametric oscillator (OPO) that is pumped by a tunable fiber laser. The OPO is singly resonant for the signal wave and consists of a 40-mm-long periodically poled LiNbO(3) crystal in a four-mirror ring cavity. At a pump power of 8.3 W provided by the wavelength-tunable Yb-doped fiber laser, the singly resonant OPO generates 1.9 W of 3200-nm cw idler radiation. The singly resonant OPO was tuned from 1515 to 1633 nm (signal) and from 3057 to 3574 nm (idler) by means of the crystal temperature and poling period. We obtained a wide idler tuning range, from 2980 to 3700 mn, by tuning the wavelength of the fiber laser from 1032 to 1095 nm.  相似文献   

14.
A continuous wave optical parametric oscillator, generating up to 300 mW idler output in the 3–4 μm wavelength region, and pumped by a fiber-amplified DBR diode laser is used for trace gas detection by means of quartz-enhanced photoacoustic spectroscopy (QEPAS). Mode-hop-free tuning of the OPO output over 5.2 cm-1 and continuous spectral coverage exceeding 16.5 cm-1 were achieved via electronic pump source tuning alone. Online monitoring of the idler wavelength, with feedback to the DBR diode laser, provided an automated closed-loop control allowing arbitrary idler wavelength selection within the pump tuning range and locking of the idler wavelength with a stability of 1.7×10-3 cm-1 over at least 30 min. Using this approach, we locked the idler wavelength at an ethane absorption peak and obtained QEPAS data to verify the linear response of the QEPAS signal at different ethane concentrations (100 ppbv-20 ppmv) and different power levels. The detection limit for ethane was determined to be 13 ppbv (20 s averaging), corresponding to a normalized noise equivalent absorption coefficient of 4.4×10-7 cm-1  W/Hz1/2. PACS 42.55.Wd; 42.65.Yj; 42.62.Fi  相似文献   

15.
We report what we believe to be the first use of a multilongitudinal-mode frequency-doubled microchip laser to pump a doubly resonant optical parametric oscillator (OPO). This compact OPO is based on potassium titanyl phosphate (KTP) and operates with a low pump power threshold of 35 mW. The OPO output consists of a single pair of signal and idler modes even though it is pumped with a multilongitudinal-mode pump laser. We achieved smooth tuning (1.7 GHz) of the output frequencies by temperature tuning of the pump laser.  相似文献   

16.
4 as a nonlinear crystal and obtained a pump threshold of 7 mW and an output power of 6 mW for a pump power of 40 mW. The OPO operated in a single longitudinal mode pair of a signal and an idler, over 1 h without mode hopping in the free-running condition. The signal and the idler wavelengths were tunable by 1 nm by changing the crystal temperature by 20 °C. The continuous tuning of the beat frequency between the signal and the idler was achieved by temperature tuning (slow control, 80 MHz/K) and E-field tuning (fast control, 0.75 MHz/V). We demonstrated the feasibility of frequency control by phase locking the beat frequency. The beat frequency could be successfully phase locked to a signal generated by a synthesizer through the electrooptic effect of the crystal. The phase locking could be maintained over 1 h. Received: 27 January 1998/Revised version: 9 March 1998  相似文献   

17.
4 (KTP) optical parametric oscillators (OPOs) with pump and idler resonant cavities. With a linear two-mirror cavity the pump power at threshold was 70 mW. The single-frequency signal and idler output wavelengths were tuned in the range of 1025 to 1040 nm and 1250 to 1380 nm by tuning the dye laser in the range of 565 to 588 nm. With a dual three-mirror cavity the threshold was 135 mW. Pumped by 500 mW of 578 nm radiation the 1040 nm single-frequency signal wave output power was 84 mW. Power and frequency stable operation with a spectral bandwidth of less than 9 MHz was obtained by piezo-electrically locking the length of the pump resonant cavity to the dye laser wavelength. Similar performance was achieved by placing the idler resonant OPO inside the resonator of the dye laser. With this system power stable and single-frequency operation was achieved with a spectral bandwidth of less than 11 MHz for the idler wave. Received: 3 February 1998/Revised version: 9 March 1998  相似文献   

18.
A watt-level, single-frequency, continuous-wave (cw) singly resonant optical parametric oscillator (OPO) based on MgO:sPPLT is described. Pumped in the green by a frequency-doubled cw diode-pumped Nd:YVO(4) laser at 532 nm, the OPO can provide up to 1.59 W of single-frequency idler output with a linewidth of ~7 MHz at pump depletions of as much as 67%. Using a compact ring resonator and optimized focusing in a 30 mm crystal, a singly resonant oscillation threshold of 2.84 W has been obtained under single-pass pumping. With a single grating period of 7.97 microm, continuous signal and idler coverage over 852-1417 nm is obtained by temperature tuning between 61 degrees C and 236 degrees C. The influence of thermal lensing on idler output power across the SRO tuning range is also verified.  相似文献   

19.
A high-power picosecond optical parametric oscillator (OPO) based on a 47-mm periodically poled lithium niobate crystal is described. More than 12 W of total average power-almost 8 W of signal power at 1.85 microm and more than 4 W of idler radiation at 2.5 microm -is simultaneously extracted from less than 18 W of average pump power. The OPO is synchronously pumped by 80-ps (FWHM) cw mode-locked pulses at 1.064 microm , and its output is tunable from 1.7 to 2.84microm . Nearly transform-limited signal pulses are obtained following the introduction of two intracavity etalons.  相似文献   

20.
We generated 1 mW of average output power at 2.8 THz (bandwidth of approximately 300 GHz) in a diffraction-limited beam by placing a 6-mm-long quasi-phase-matched GaAs crystal inside the cavity of a synchronously pumped optical parametric oscillator (OPO). The OPO used type-II-phase-matched periodically poled lithium niobate as a gain medium and was pumped by a mode-locked laser at 1064 nm, with a 7 ps pulse duration, 50 MHz repetition rate, and 10 W average output power. The terahertz radiation was generated by difference frequency mixing between the signal and idler waves of the near-degenerate doubly resonant OPO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号