首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents the development of an analytical method for determining 9 synthetic musks in water matrices. The developed method is based on stir bar sorptive extraction (SBSE), coated with polydimethylsiloxane, and coupled with a thermal desorption–gas chromatography–mass spectrometry system (TD–GC–MS). SBSE can efficiently trap and desorb the analytes providing low limits of detection (between 0.02 ng L−1 and 0.3 ng L−1). Method validation showed good linearity, repeatability and reproducibility for all compounds. Furthermore, the limited manipulation of the sample required in this method implies a significant decrease of the risk of external contamination of the samples. The performance of the method in real samples was evaluated by analysing biological wastewater treatment plant (WWTP) influent and effluent samples, reverse osmosis treatment plant effluents and river waters. The most abundant musk was galaxolide with values up to 2069 ng L−1 and 1432 ng L−1 in the influent and effluent of urban WWTP samples, respectively. Cashmeran, Pantolide and Tonalide were also detected in all the matrices with values up to 94 ng L−1, 26 ng L−1 and 88 ng L−1, respectively. Although in Europe the use of nitromusks in cosmetics is prohibited, musk xylene and musk ketone were detected both in the WWTP and in the river samples. As far as we know, this is the first time than a SBSE method coupled with TD is applied for the determination of synthetic musks in water samples.  相似文献   

2.
A multiresidue analytical method for the determination of emerging pollutants belonging to personal care products (PCPs) (antimicrobials, preservatives), benzotriazole UV stabilizers (BUVSs) and organophosphorus compounds (OPCs) in fish has been developed using high speed solvent extraction (HSSE) followed by silica gel clean up and ultra fast liquid chromatography coupled with tandem mass spectrometry (UFLC–MS/MS) analysis. Developed extraction and clean up method yielded good recovery (>70%) for all the four groups of emerging pollutants, i.e. antimicrobials (78.5–85.6%), preservatives (85.0–89.4%), BUVSs (70.9–112%) and OPCs (81.6–114%; except for TEP – 68.9% and TPeP – 58.1%) with RSDs ranging from 0.7 to 15.4%. Intra- and inter-day repeatabilities were less than 19.8% and 19.0%, respectively at three spiked levels. The concentrations were given in lipid weight (lw) basis, and the method detection limits were achieved in the lowest range of 0.001–0.006 ng g−1 for two antimicrobials, 0.001–0.015 ng g−1 for four preservatives, 0.0002–0.009 ng g−1 for eight BUVSs and 0.001–0.014 ng g−1 for nine OPCs. Finally, the method was successfully validated as a simple and fast extraction method for the determination of 23 compounds belonging to PCPs, BUVSs and OPCs and applied to the analysis of three species of fish from Manila Bay, the Philippines. Concentrations ranged from 27 to 278 ng g−1 for antimicrobials, 6.61 to 1580 ng g−1 for paraben preservatives, −1 for BUVSs and ND (not detected) to 266 ng g−1 for OPCs suggesting the ubiquitous contamination by these emerging pollutants in Manila Bay. This is the first method developed for the determination of triclocarban, four paraben preservatives and four BUVSs, in fish.  相似文献   

3.
Robust analytical procedures for the measurement of decamethylcyclopentasiloxane (D5) in river and estuarine sediments and their application in determining environmental concentrations in the UK are presented for the first time in this work. Novel approaches to minimise commonly reported artefacts are utilised, improving the confidence in the concentrations of D5 reported. Accelerated solvent extraction (ASE) and liquid–solid extraction methods are compared. Both methods use on-column injection gas chromatography/mass spectrometry (GC/MS). Measurements of D5 concentrations in sediments sampled from the river Great Ouse and from the Humber estuary (UK) are also reported. ASE was suitable to measure concentrations of D5 in sediments obtained from the river Great Ouse, UK (186–1450 ng g−1, dry weight) and octamethyltetracyclosiloxane (D4, 12–24 ng g−1, dry weight). C12 linear alkybenzene (C12 LAB), which can be used as a chemical marker for sewage effluent related emissions, was also measured in this analysis. Liquid–solid extraction was optimised to provide more confidence in the lower D5 concentrations measured in the Humber estuary, UK (49–256 ng g−1, dry weight). A Limit of quantitation (LOQ) for D5 of 57–110 and 4 ng g−1 dry weight was determined for ASE and liquid–solid extraction, respectively.  相似文献   

4.
An enantioselective method for the determination of fluoxetine (a selective serotonin reuptake inhibitor) and its pharmacologically active metabolite norfluoxetine has been developed for raw and treated wastewater samples. The stable isotope-labeled fluoxetine and norfluoxetine were used in an extended way for extraction recovery calculations at trace level concentrations in wastewater. Wastewater samples were enriched by solid phase extraction (SPE) with Evolute CX-50 extraction cartridges. The obtained extraction recoveries ranged between 65 and 82% in raw and treated wastewater at a trace level concentration of 50 pM (15-16 ng L−1). The target compounds were identified by the use of chiral liquid chromatography tandem mass spectrometry (LC-MS/MS) in selected reaction monitoring (SRM) mode. The enantiomers were successfully resolved on a chiral α1-acid glycoprotein column (chiral AGP) with acetonitrile and 10 mM ammonium acetate buffer at pH 4.4 (3/97, v/v) as the mobile phase. The effects of pH, amount of organic modifier and buffer concentration in the mobile phase were investigated on the enantiomeric resolution (Rs) of the target compounds. Enantiomeric Rs-values above 2.0 (1.03 RSD%, n = 3) were achieved for the enantiomers of fluoxetine and norfluoxetine in all mobile phases investigated. The method was validated by assessing parameters such as cross-contamination and carryover during SPE and during LC analysis. Cross-talk effects were examined during the detection of the analytes in SRM mode. In addition, the isotopic purity of fluoxetine-d5 and norfluoxetine-d5 were assessed to exclude the possibility of self-contamination. The interassay precision of the chromatographic separation was excellent, with relative standard deviations (RSD) equal to or lower than 0.56 and 0.81% in raw and treated wastewaters, respectively. The method detection and quantification limits (respectively, MDL and MQL) were determined by the use of fluoxetine-d5 and norfluoxetine-d5. The MQL for the single enantiomers ranged from 12 to 14 pM (3.6-4.3 ng L−1) in raw wastewater and from 3 to 4 pM (0.9-1 ng L−1) in treated wastewater. The developed method has been employed for the quantification of (R)-fluoxetine, (S)-fluoxetine and the enantiomers of norfluoxetine in raw and treated wastewater samples to be presented in Part II of this study.  相似文献   

5.
A fast, simple and environmentally friendly ultrasound-assisted dispersive liquid–liquid microextraction (USADLLME) procedure has been developed to preconcentrate geosmin and 2-methylisoborneol (MIB) from water and wine samples prior to quantification by gas chromatography–mass spectrometry (GC–MS). A two-stage multivariate optimization approach was developed by means of a Plackett–Burman design for screening and selecting the significant variables involved in the USADLLME procedure, which was later optimized by means of a circumscribed central composite design. The optimum conditions were: solvent volume, 8 μL; solvent type: tetrachloroethylene; sample volume, 12 mL; centrifugation speed, 2300 rpm; extraction temperature 20 °C; extraction time, 3 min; and centrifugation time, 3 min. Under the optimized experimental conditions the method gave good levels of repeatability with coefficient of variation under 11% (n = 10). Limits of detection were 2 and 9 ng L−1 for geosmin and MIB, respectively. Calculated calibration curves gave high levels of linearity with correlation coefficient values of 0.9988 and 0.9994 for geosmin and MIB, respectively. Finally, the proposed method was applied to the analysis of two water (reservoir and tap) samples and three wine (red, rose and white) samples. The samples were previously analyzed and confirmed free of target analytes. Recovery values ranged between 70 and 113% at two spiking levels (0.25 μg L−1 and 30 ng L−1) showing that the matrix had a negligible effect upon extraction. Only red wine showed a noticeable matrix effect (70–72% recovery). Similar conclusions have been obtained from an uncertainty budget evaluation study.  相似文献   

6.
Zhang PP  Shi ZG  Yu QW  Feng YQ 《Talanta》2011,83(5):5896-1715
A new method based on dispersive liquid-liquid microextraction (DLLME) in combination with high-performance liquid chromatography (HPLC) has been developed for the analysis of UV filters. A specially designed flask, which has two narrow open necks with one of them having a capillary tip, was employed to facilitate the DLLME process. By adopting such a device, the extraction and subsequent phase separation were conveniently achieved. A binary solvent system of water sample and low-density extraction solvent (1-octanol) was used for the DLLME and no disperser solvent was involved. The extraction was accelerated by magnetic agitation of the two phases. After extraction, phase separation of the extraction solvent from the aqueous sample was easily achieved by leaving the extraction system statically for a while. No centrifugation step involving in classical DLLME was necessary. The analyte-enriched phase, floating above the sample solution, was elevated and concentrated into the narrow open tip of the flask by adding pure water into it via the other port, which was withdrawn with a microsyringe for the subsequent HPLC analysis. Under the optimized conditions, the limits of detection for the analytes were in range of 0.2-0.8 ng mL−1 .The linearity ranges were 8-20,000 ng mL−1 for HB, 7-20,000 ng mL−1 for DB, 8-10,000 ng mL−1 for BP and 5-20,000 ng mL−1 for HMB, respectively. Enrichment factors ranging from 59 to 107 folders were obtained for the analytes. The relative standard deviations (n = 3) at a spiked level of 80 ng mL−1 were between 1.4 and 4.8%. The proposed magnetic stirring-assisted DLLME method was successfully applied to the analysis of lake water samples.  相似文献   

7.
We describe a selective pressurized liquid extraction (SPLE) method, followed by gas chromatography–mass spectrometry (GC–MS), for the simultaneous extraction and clean-up of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in sheep liver tissue samples. The on-line clean-up of liver tissue by SPLE was tested using differing amount of acid-modified silica (sulphuric acid:silica gel, 1:2, w/w), the most effective amount being 20 g. Different extraction solvents (iso-hexane and dichloromethane), either alone or in various combinations, were used to extract these target compounds from spiked liver samples. Variables affecting the SPLE extraction efficiency, including temperature, pressure, number of extraction cycles and static extraction time were studied; the optimum parameters were 80 °C, 10.3 MPa, 2 cycles and 5 min, respectively. The SPLE based method was compared with more traditional Soxhlet, off-line PLE, ultrasonic and heating extraction methods. Overall the mean percentage recoveries for all target chemicals using SPLE were 86–103% (n = 3, SD < 9%), and compared favourably with the Soxhlet (63–109%, n = 3, SD < 8%), off-line PLE (82–104%, n = 3, SD < 18%), ultrasonic (86–99%, n = 3, SD < 11%) and heating (72–102%, n = 3, SD < 21%) extraction methods. The limits of detection of the proposed method were 5–96 pg g−1 and 2–29 pg g−1 for the different PBDE and PCB chemicals studied, respectively. The outputs of the proposed method were linear over the range from 0.02 to 30 ng g−1, for all PCB and PBDE congeners except for PBDE 100 and 153 (0.05–30 ng g−1) and PBDE 183 (0.1–30 ng g−1). The method was successfully applied to sheep liver samples for the determination of the target PBDE and PCB compounds.  相似文献   

8.
Malavia J  Santos FJ  Galceran MT 《Talanta》2011,84(4):574-1162
This paper describes a fast and simple pressurized liquid extraction (PLE) method combined with gas chromatography coupled to ion trap tandem mass spectrometry (GC-ITMS-MS) for the determination of polybrominated biphenyls (PBBs) in fish samples. The method is based on a simultaneous extraction/clean-up step to reduce analysis time and solvent consumption. The effect of several PLE operating conditions, such as solvent type, extraction temperature and time, number of cycles, and lipid retainer, was optimized to obtain maximum recovery of the analytes with the minimum presence of matrix-interfering compounds. The best conditions were obtained at 100 °C with n-hexane using 15 g of silica modified with sulphuric acid (44%, w/w) as sorbent for lipid removal. Quality parameters of the GC-ITMS-MS method were established, achieving good linearity (r > 0.998), between 1 and 500 ng ml−1, and low instrumental limits of detection (0.14-0.76 pg injected). For the whole method, limits of detection ranging from 0.03 to 0.16 ng g−1 wet weight and good precision (RSD < 16%) were obtained.  相似文献   

9.
Li D  Chang X  Hu Z  Wang Q  Li R  Chai X 《Talanta》2011,83(5):1742-1747
A new material has been synthesized using dry process to activate bentonite followed by N-(2-hydroxyethyl) ethylenediamine connecting chlorosilane coupling agent. The synthesized new material was characterized by elemental analysis, FT-IR and thermogravimetry which proved that bentonite was successfully modified. The most interesting trait of the new material was its selective adsorption for rare earth elements. A variety of conditions of the new material were investigated for adsorption. The optimal conditions were determined with respect to pH and shaking time. Samarium (Sm) was quantitatively adsorbed at pH 4 and shaking time of 2 min onto the new material. Under these conditions the maximum static adsorption capacity of Sm(III) was found to be 17.7 mg g−1. The adsorbed Sm(III) ion were quantitatively eluted by 2.0 mL 0.1 mol L−1 HCl and 5% CS (NH2)2 solution. According to IUPAC definition, the detection limit (3σ) of this method was 0.60 ng mL−1. The relative standard deviation (RSD) under optimum conditions was less than 3% (n = 8). The new material also was applied for the preconcentration of trace Sm(III) in environmental samples with satisfactory results.  相似文献   

10.
A rapid and simple procedure for the direct screening of urine samples is described. The method involves microextraction in a packed sorbent (MEPS) that is on-line coupled to a capillary liquid chromatograph with fluorimetric detection. The overall arrangement works as a screening/confirmatory system for monitoring non-polar heterocyclic aromatic amines (HAAs) in urine samples. This configuration allows the selective retention of HAAs from urine on a C18 MEPS cartridge integrated in the needle of a micro-well plate autosampler. Retained HAAs were eluted with methanol/water (90:10, v/v) and directly injected into the fluorimetric detector. This screening method provides a yes/no binary response that may require confirmation. The samples for which the concentration of HAAs was close to or above the established threshold limit (30 ng mL−1) were subjected to capillary liquid chromatography (CLC) for confirmation purposes. A mobile phase of acetonitrile and triethylamine (25 mM) at pH 2.5, through a gradient of composition at a flow rate of 20 μL min−1, resulted in good separations between the analytes in less than 11 min. This confirmation method allowed the determination of the analytes in the 10-100 ng mL−1 range for harmane and norharmane and from 20 to 200 ng mL−1 for 3-amino-1,4-dimethyl-5H-pyrido-[4,3-b] indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido-[4,3-b] indole (Trp-P-2), 2-amino-9H-pyrido-[2,3-b] indole (AαC) and 2-amino-3-methyl-9H-pyrido-[2,3-b] indole (MeAαC), with relative standard deviation (RSD) values between 2.12% and 3.73%, and limits of detection between 1.6 and 5.6 ng mL−1 for all the HAAs.  相似文献   

11.
Menon SK  Modi NR  Patel B  Patel MB 《Talanta》2011,83(5):1329-1334
We found that the PVC membrane, containing azo calix[4]arene is a suitable ionophore, exhibited a Nernstian response for neodymium (Nd3+) ions (with slope of 19.8 ± 0.2 mV decade−1 for the triply charged ion) over a wide linear range of 4.0 × 10−8 to 1.0 × 10−1 mol L−1 with a detection limit 1.0 × 10−8 mol L−1, a relatively fast response time, in the whole concentration range (<10 s), and a considerable life time at least for four months in the pH range of 4.0-8.0. Furthermore, the electrode revealed high selectivity with respect to all the common alkali, alkaline earth, transition and heavy metal ions, including the members of the lanthanide family other than Nd3+. Concerning its applications, it was effectively employed for the determination of neodymium ions in industrial waste water as well as in lake water.  相似文献   

12.
A method for the quantitative determination of non-steroidal anti-inflammatory drugs (NSAIDs) in sewage sludge was developed and validated. The target compounds were extracted using pressurized hot water extraction (PHWE) and then purified and preconcentrated by three-phase hollow fiber liquid phase microextraction (HF-LPME) followed by LC–ESI-MS analysis. The PHWE was optimized with regard to the pH of solvent as well as other operational parameters. The optimum conditions were 0.01 M NaOH as the extraction solvent, temperature of 120 °C, pressure of 100 bar, static time 5 min, 5 cycles, flush volume 90% and purge time 60 s. Spike recoveries for sludge samples spiked at 200 ng g−1 were in the range of 101–109% but for the native drugs in non-spiked sludge samples, recoveries were 38.9%, 59.8%, 90.3% and 47.8% for ketoprofen, naproxen, diclofenac and ibuprofen, respectively. Donor phase pH, ionic strength and extraction time were optimized for HF-LPME after PHWE. The optimum conditions were 2 h extraction at pH 1.5 without salt addition. Enrichment factors in the range of 947–1213 times were achieved (extraction recoveries were 23.6–30.3%) for HF-LPME after PHWE. The matrix effect on the ionization of drugs in LC–ESI-MS was also investigated. The results show that there is a smaller matrix effect (−8.9% to +14.6%) in comparison with other published values obtained using solid phase extraction (SPE) for clean-up after pressurized liquid extraction (PLE). Method detection limits (MDLs) and method quantification limits (MQLs) for different drugs were in the range of 0.4–3.7 ng g−1 and 1.5–12.2 ng g−1 in dried sludge samples, respectively. The characteristics of the proposed method were compared with those of other published works. The considerably lower ion suppression/enhancement and minimum use of organic solvents (a few microliters of di-n-hexyl ether) in the sample preparation step are two highlighted advantages of the proposed method in comparison with previously published works. The method was applied to determine NSAIDs in sewage sludge from Källby wastewater treatment plant (Lund, Sweden) in April, June, August and October 2010. The highest concentration level was recorded for ibuprofen in the April sewage sludge sample (588 ng g−1) and all of the selected NSAIDs were detected in all the samples analyzed.  相似文献   

13.
A simple, fast and sensitive HPLC method with electrochemical detection employing boron-doped diamond electrode (BDD) for the determination of sildenafil (Viagra™), vardenafil (Levitra™) and their main metabolites, N-desmethyl sildenafil and N-desethyl vardenafil in human plasma is presented. The assay involved drug extraction by tert-butyl methyl ether and isocratic reversed-phase liquid chromatography with amperometric detection. Complete separation of all analytes was achieved within 12 min. The mobile phase consisted of 20 mM sodium dihydrogen phosphate with 40 mM sodium perchlorate/acetonitrile (70:30, v/v), pH 3.5. The electrode working potential was +1520 mV (vs. Pd/H2). Calibration curves were linear over the concentration range of 10–400 ng mL−1. Phloretin was used as an internal standard. The limits of detection (LOD) and quantification (LOQ) for the studied analytes were within the range of 2–4 ng mL−1 and 7.0–13.4 ng mL−1, respectively. The developed method was applied to human plasma samples spiked with analytes at therapeutic concentrations. The study confirms the method's suitability for both pharmacokinetic studies and therapeutic monitoring.  相似文献   

14.
The detection of nitroaromatic compounds, best known as raw materials in explosives preparations, is important in many fields including environmental science, public security and forensics. CdSe quantum dots capped with PAMAM-G4 dendrimer were synthetized in water and used for the detection of trace amounts of three nitroaromatic compounds: 4-methoxy-2-nitrophenol (MNP), 2-amine-5-chloro-1,3-dinitrobenzene (ACNB) and 3-methoxy-4-nitrobenzoic acid (MNB). To increase the apparent water solubility of these compounds α-cyclodextrin (α-CD) was used to promote the formation of inclusion complexes. The studied nitroaromatic compounds (plus α-CD) significantly quenched the fluorescence intensity of the nanocomposite with linear Stern-Volmer plots. The Stern-Volmer constants (standard deviation in parenthesis) were: MNB, KSV = 65(5) × 104 M−1; ACNB, KSV = 19(2) × 104 M−1; and, MNP, KSV = 33(1) × 102 M−1. These constants suggest the formation of a ground state complex between the nitroaromatric compounds and the sensor which confers a relatively high analytical sensitivity. The detection sensibilities are about 0.01 mg L−1 for MNB and ACNB and about 0.1 mg L−1 for MNP. No interferences or small interferences are observed for trinitrotoluene [KSV = 10(2) × 102 × M−1], 2,4-dinitrotoluene [KSV = 20(3) × 10 M−1], 2,6-dinitrotoluene [KSV = 11(4) × 10 M−1] and nitrobenzene [KSV = 2(1) × 103 × M−1].  相似文献   

15.
Combining headspace (HS) sampling with a needle-trap device (NTD) to determine priority volatile organic compounds (VOCs) in water samples results in improved sensitivity and efficiency when compared to conventional static HS sampling. A 22 gauge stainless steel, 51-mm needle packed with Tenax TA and Carboxen 1000 particles is used as the NTD. Three different HS-NTD sampling methodologies are evaluated and all give limits of detection for the target VOCs in the ng L−1 range. Active (purge-and-trap) HS-NTD sampling is found to give the best sensitivity but requires exhaustive control of the sampling conditions. The use of the NTD to collect the headspace gas sample results in a combined adsorption/desorption mechanism. The testing of different temperatures for the HS thermostating reveals a greater desorption effect when the sample is allowed to diffuse, whether passively or actively, through the sorbent particles. The limits of detection obtained in the simplest sampling methodology, static HS-NTD (5 mL aqueous sample in 20 mL HS vials, thermostating at 50 °C for 30 min with agitation), are sufficiently low as to permit its application to the analysis of 18 priority VOCs in natural and waste waters. In all cases compounds were detected below regulated levels.  相似文献   

16.
A novel analytical protocol based on interfacing on-line matrix solid-phase dispersion (MSPD) with high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) was developed for extraction and determination of 13 sulfonamide residues in grass carp tissues. The target analytes were separated on a fused-core C18-silica column with a period of 7 min and quantified by a triple–quadrupole linear ion-trap mass spectrometer in positive ion multiple-reaction monitoring (MRM) mode. The proposed method was optimized and validated according to Commission Decision 2002/657/EC. The matrix-matched calibration curves were performed at six concentration levels and good linear relationship (R2 = 0.993–0.998) was observed within the range of 0.1–100 ng mL−1. The mean values of relative standard deviation of intra- and inter-day ranging from 1.8% to 7.8% and from 2.8% to 10.3% were obtained, respectively. Moreover, satisfied recoveries (69.0–96.3%) of all studied sulfonamides were demonstrated in different spiked levels, with RSDs ≤ 13.2%. The proposed method has been applied successfully to the analysis of sulfonamides in several grass carp samples, and the results indicated that this novel instrumental coupling was fast, sensitive, reliable and environmental friendly with good prospects.  相似文献   

17.
In this work a fast liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) method using a C18 Fused Core™ column, was developed for the simultaneous analysis of bisphenol A diglycidyl ether (BADGE), bisphenol A (2,3-dihydroxypropyl) glycidyl ether (BADGE·H2O), bisphenol A bis(2,3-dihydroxypropyl) ether (BADGE·2H2O), bisphenol A (3-chloro-2-hydroxypropyl) glycidyl ether (BADGE·HCl), bisphenol A bis(3-chloro-2-hydroxypropyl) ether (BADGE·2HCl) and bisphenol A (3-chloro-2-hydroxypropyl)(2,3-dihydroxypropyl ether) (BADGE·HCl·H2O) and bisphenol F diglycidyl ether (BFDGE), bisphenol F bis(2,3-dihydroxypropyl) ether (BFDGE·2H2O), bisphenol F bis(3-chloro-2-hydroxypropyl) ether (BFDGE·2HCl). The LC method was coupled with a triple quadrupole mass spectrometer, using an ESI source in positive mode and using the [M+NH4]+ adduct as precursor ion for tandem mass spectrometry experiments. The method developed was applied to the determination of these compounds in canned soft drinks and canned food. OASIS HLB solid phase extraction (SPE) cartridges were used for the analysis of soft drinks, while solid canned food was extracted with ethyl acetate. Method limits of quantitation ranged from 0.13 μg L−1 to 1.6 μg L−1 in soft drinks and 1.0 μg kg−1 to 4.0 μg kg−1 in food samples. BADGE·2H2O was detected in all the analyzed samples, while other BADGEs such as BADGE·H2O, BADGE·HCl·H2O, BADGE·HCl and BADGE·2HCl were also detected in canned foods.  相似文献   

18.
Gao W  Chen G  Chen Y  Li N  Chen T  Hu Z 《Journal of chromatography. A》2011,1218(33):5712-5717
A novel method of on-line single drop microextraction (SDME) coupled with sweeping micellar electrokinetic chromatography (MEKC) for the selective extraction and dual preconcentration of alkaloids was developed. In this technique, analytes of three alkaloids were firstly extracted from 4.0 mL basic aqueous sample solution (donor phase, 500 mM NaOH) into a layer of n-octanol at temperature 30 °C with the stirring rate of 1150 rpm, then back-extracted into the acidified aqueous acceptor (acceptor phase, 50 mM H3PO4) suspended at the tip of a capillary at 650 rpm. Then, the aqueous acceptor was introduced into capillary by hydrodynamic injection with a height difference of 15 cm between the inlet and outlet of capillary for 300 s, and analyzed directly by on-line sweeping MEKC. With the selective SDME, we were able to extract three alkaloids without any interfering components in human urine samples. Under the optimum conditions, the proposed method achieved limits of detections (LOD) of between 0.2 ng mL−1 and 1.5 ng mL−1 with 1583–3556-fold increases in detection sensitivity for three analytes, which indicated that it was a promising method for analysis of alkaloids in human urine.  相似文献   

19.
García MD  Pedrosa BP  Galera MM 《Talanta》2011,83(5):271-1672
This paper describes about an automated on-line enrichment method for the simultaneous determination of seven β-blockers in river water using a short liquid chromatography column for preconcentration coupled with LC-DAD. The method performs the preconcentration of 30 mL of river water samples (5% organic modifier) using a 50 mm × 4.6 mm C18 column for enrichment and a 150 mm × 4.6 mm C18 column for separation, allowing the determination of β-blockers at trace levels in river water. The analytical procedure was developed by optimizing the breakthrough parameters (flow rate, time of preconcentration and percentage of organic modifier added to the sample) in order to achieve the maximum sensitivity, and by optimizing the mobile phase (composition and flow rate) to get adequate separation of the components in a reasonable analysis time. Under the optimized conditions, the method was validated with respect to linearity, precision, limits of detection, limits of quantification and accuracy. Detection and quantitation limits ranged between 0.1 and 3.1 and between 1.0 and 5.0 ng mL−1, respectively, whereas the RSD on inter-day precision was below 8%.To cope with the matrix effect in the determination of these drugs in river water samples, the standard addition methodology was successfully applied. Recoveries ranging from 81 to 115% proved the accuracy of the methodology proposed in this work.  相似文献   

20.
Araújo CL  Melo EI  Coelho NM 《Talanta》2011,84(4):661-1173
The development, evaluation and application of a simple and low-cost graphite carbon electrode for the direct determination of citrate in food samples are described here. The electrode exhibits a linear response with a slope of −29.0 ± 1.0 mV decade−1 in a concentration range of 0.07-7.0 mmol L−1 in 0.1 mol L−1 KCl/1.0 mmol L−1 phosphate buffer solution with a limit of detection of 3.0 μmol L−1. The electrode is easily constructed at a relatively low cost and has a fast time response (within 120 s) with no significant changes in its performance characteristics. The performance of the graphite sensor was tested to determine citrate in beverage samples (juices and an isotonic drink), and the results were validated against a reference procedure. The proposed method is quick, inexpensive, selective and sensitive, and is based entirely on conventional instrumentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号