首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In this research, the reforming of simulated natural gas containing a high CO2 content under AC non-thermal gliding arc discharge with partial oxidation was conducted at ambient temperature and atmospheric pressure, with specific regards to the concept of the direct utilization of natural gas. This work aimed at investigating the effects of applied voltage and input frequency, as well as the effect of adding oxygen on the reaction performance and discharge stability in the reforming of the simulated natural gas having a CH4:C2H6:C3H8:CO2 molar ratio of 70:5:5:20. The results showed marked increases in both CH4 conversion and product yield with increasing applied voltage and decreasing input frequency. The selectivities for H2, C2H6, C2H4, C4H10, and CO were observed to be enhanced at a higher applied voltage and at a lower frequency, whereas the selectivity for C2H2 showed an opposite trend. The use of oxygen was found to provide a great enhancement of the plasma reforming of the simulated natural gas. For the combined plasma and partial oxidation in the reforming of CO2-containing natural gas, air was found to be superior to pure oxygen in terms of reactant conversions, product selectivities, and specific energy consumption. The optimum conditions were found to be a hydrocarbons-to-oxygen feed molar ratio of 2/1 using air as an oxygen source, an applied voltage of 17.5 kV, and a frequency of 300 Hz, in providing the highest CH4 conversion and synthesis gas selectivity, as well as extremely low specific energy consumption. The energy consumption was as low as 2.73 × 10−18 W s (17.02 eV) per molecule of converted reactant and 2.49 × 10−18 W s (16.60 eV) per molecule of produced hydrogen.  相似文献   

2.
The removal of hydrogen sulfide and dust simultaneously by the DC corona discharge plasma with a wire-cylinder reactor was studied at atmospheric pressure and room temperature. The outlet gases were analyzed by Fourier Transform Infrared. Chemical compositions of the dust collected from ground electrode were analyzed by X-ray fluorescence. The results showed that the DC corona discharge is effective in removing H2S and dust simultaneously. The best H2S conversion was gained with the 2 cm discharge gap. The lower inlet H2S concentration, the higher conversion efficiency was gained at any specific input energy (SIE), while the energy yield was on the contrary. The removal efficiency of H2S decreased gradually as oxygen concentration increased, which means that the H2S decomposition mainly depends on direct electron collisions or short-living species, such as·O, ·OH radicals in the non-thermal plasma. At the initial stage, the conversion efficiency of H2S increased with the increasing of relative humidity, but later decreased while the relative humidity keep increasing with the same SIE. Existing of dust can not only reduce the energy consumption of H2S conversion and improve the removal efficiency, but also inhibit the yield of SO2 for it can further react with some compounds in the dust. With the discharge gap of 2 cm, inlet H2S concentration of 2400 ppm, O2 Of 0.5 %, relative humidity of 41 %, dust content of 4000 ± 5 % mg/m3 and SIE of 600 J/L, the H2S conversion reached 98.8 %, and the dust removal efficiency was close to 100 %.  相似文献   

3.
The effect of stage number of multistage AC gliding arc discharge reactors on the process performance of the combined reforming and partial oxidation of simulated CO2-containing natural gas having a CH4:C2H6:C3H8:CO2 molar ratio of 70:5:5:20 was investigated. For the experiments with partial oxidation, either pure oxygen or air was used as the oxygen source with a fixed hydrocarbon-to-oxygen molar ratio of 2/1. Without partial oxidation at a constant feed flow rate, all conversions of hydrocarbons, except CO2, greatly increased with increasing number of stages from 1 to 3; but beyond 3 stages, the reactant conversions remained almost unchanged. However, for a constant residence time, only C3H8 conversion gradually increased, whereas the conversions of the other reactants remained almost unchanged. The addition of oxygen was found to significantly enhance the process performance of natural gas reforming. The utilization of air as an oxygen source showed a superior process performance to pure oxygen in terms of reactant conversion and desired product selectivity. The optimum energy consumption of 12.05 × 1024 eV per mole of reactants converted and 9.65 × 1024 eV per mole of hydrogen produced was obtained using air as an oxygen source and 3 stages of plasma reactors at a constant residence time of 4.38 s.  相似文献   

4.
This work investigates the dry reforming of CH4 as an important process for the conversion of greenhouse gases to synthesis gas. The mixture of methane and CO2 is readily available in the greenhouse gas which makes realization of dry reforming of methane process more convenient. The paper is an attempt to numerically analyse by computational fluid dynamics (CFD) the coking and gasification mechanisms in the lab-scale membrane module with a fixed-bed supported nickel catalyst (Ni/Al2O3). The concentrations and molar fluxes obtained by the simulation are compared with the experimental profiles to validate the CFD model. It was found that working in a catalytic fixed-bed membrane reactor, in the case of the dry reforming of methane and under specific conditions, was not critical, from the point of view of catalyst deactivation.  相似文献   

5.
The adsorption behaviors of CO2 and CH4 on new siliceous zeolites JSR and NanJSR (n = 2, 8, 16) were simulated using the Grand Canonical Monte Carlo method. The adsorption isotherms of CO2 became higher with an increase in the Na+ number at a low pressure range (<150 kPa), whereas the isotherms showed a crossover with increasing pressure and the adsorption amount became smaller at a high pressure range (>850 kPa). With an increase in Na+ number, the pore volume decreased as the pore space was occupied by increasing Na+ ions. Additionally, two energy peaks on the interaction energy curves implied that CO2 was adsorbed on two active sites. On the other hand, the adsorption amount of CH4 decreased with an increase in the Na+ number and only one energy peak was observed. Adsorption isotherms were well fitted with the Langmuir and Freundlich equations up to 1000 kPa and the adsorption affinity of CO2 on Na16JSR zeolite was highest. The adsorption capacities of CO2 in the studied zeolites were up to 38 times higher than those of CH4. Diffusion constants of CO2 and CH4 decreased with an increase in the adsorbed amount and Na+ number. Considering the adsorbed amount, adsorption selectivity and affinity, zeolites JSR with a low Na+ number (JSR and Na2JSR) is a good candidate for a pressure swing adsorption in the separation of CO2/CH4 mixture whereas JSR zeolites with high Na+ ratios (Na16JSR and Na8JSR) may be a better selection for a vacuum swing adsorption.  相似文献   

6.
Ion-exchange with different cations (Na+, NH4 +, Li+, Ba2+ and Fe3+) was performed in binderless 13X zeolite pellets. Original and cation-exchanged samples were characterized by thermogravimetric analysis coupled with mass spectrometry (inert atmosphere), X-ray powder diffraction and N2 adsorption/desorption isotherms at 77 K. Despite the presence of other cations than Na (as revealed in TG-MS), crystalline structure and textural properties were not significantly altered upon ion-exchange. Single component equilibrium adsorption isotherms of carbon dioxide (CO2) and methane (CH4) were measured for all samples up to 10 bar at 298 and 348 K using a magnetic suspension balance. All of these isotherms are type Ia and maximum adsorption capacities decrease in the order Li > Na > NH4–Ba > Fe for CO2 and NH4–Na > Li > Ba for CH4. In addition to that, equilibrium adsorption data were measured for CO2/CH4 mixtures for representative compositions of biogas (50 % each gas, in vol.) and natural gas (30 %/70 %, in vol.) in order to assess CO2 selectivity in such scenarios. The application of the Extended Sips Model for samples BaX and NaX led to an overall better agreement with experimental data of binary gas adsorption as compared to the Extended Langmuir Model. Fresh sample LiX show promise to be a better adsorption than NaX for pressure swing separation (CO2/CH4), due to its higher working capacity, selectivity and lower adsorption enthalpy. Nevertheless, cation stability for both this samples and NH4X should be further investigated.  相似文献   

7.
Methane is one of the promising alternatives of petroleum, which should be used for not only a fuel but also a resource for hydrogen and more useful chemicals as with the petroleum. However, the selective methane conversion to them is still difficult in contrast to the combustion. Three types of photocatalytic reactions for methane conversion, i.e., the photocatalytic non-oxidative coupling of methane (2CH4 → C2H6 + H2), the photocatalytic dry reforming of methane (CH4 + CO2 → 2CO + 2H2) and the photocatalytic steam reforming of methane (CH4 + 2H2O → 4H2 + CO2), can take place around room temperature or at a mild condition such as 473 K using photoenergy and semiconductor photocatalyst. In the present short review, the details of each photocatalytic reaction and the design concept of the semiconductor photocatalysts for each photocatalytic methane conversion were summarized and discussed.  相似文献   

8.
A novel plasma-catalyst converter (NPCC) was engineered in applying the carbon capture utilization technology for the destruction of carbon dioxide (CO2), which is a cause of global warming and is generated from the combustion of fossil fuels. The NPCC has an orifice-type baffle to improve an amount of gas feed with the higher CO2 destruction for a stationary point sources application . To examine its ability for the CO2 destruction, the performance analysis was conducted on the effects of methane additive, nozzle injection velocity, total gas feed, and catalyst type. The product gas from the NPCC was combustible components like CO, H2, CH4, THCs. The CO2 destruction and the CH4 conversion at a 1.29 CH4/CO2 ratio were 37 and 47 %, respectively, and the energy decomposition efficiency was 0.0036 L/min W. The nickel oxide catalyst among other catalysts showed the most effectiveness for the CO2 destruction and CH4 conversion at a lower temperature. The carbon-black produced without the catalytic bed has carbon nanoparticles with diverse shapes, such as spherical carbon particles and carbon nanotubes; and its high conductivity and specific surface area were suitable for special electronic materials, fuel cells, and nanocomponents.  相似文献   

9.
Reactions of methane with water and CO2 in thermal plasma generated in a special plasma torch with a water-stabilized arc were investigated. Steam plasma with very high enthalpy and low mass flow rate was produced in a dc arc discharge which was in direct contact with water vortex surrounding the arc column. Composition of produced gas, energy balance of the process and its efficiency were determined from measured data. The output H2/CO ratio could be adjusted by a choice of feed rates of input reactants in the range 1.1–3.4. Depending on experimental conditions the conversion of methane was up to 99.5%, the selectivity of H2 was up to 99.9%, and minimum energy needed for production of 1 mol of hydrogen was 158 kJ/mol. Effect of conditions on process characteristics was studied. Comparison of measured data with results of theoretical computations confirmed that the reforming process produces gas with composition which is close to the one obtained from the thermodynamic equilibrium calculations. Relations between process enthalpy, composition of produced syngas and process characteristics were determined both theoretically and experimentally.  相似文献   

10.
One possible solution to mitigating the effects of high atmospheric concentrations of carbon dioxide (CO2) is the use of a plasma source to break apart the molecule into carbon monoxide (CO) and oxygen. This work experimentally investigates the efficiency of dissociation of CO2 in a 1-kW radio-frequency (rf) plasma source operating at 13.56-MHz in a low-pressure discharge. Mass spectrometry diagnostics are used to determine the species present in the discharge, and these measurements are used to calculate the energy efficiency and conversion efficiency of CO2 dissociation in the rf plasma source. Experimental results have found that the conversion efficiency of CO2 to CO can reach values near 90%, however energy efficiency reaches a maximum of 3%. A theoretical energy cost analysis is also given as a method to evaluate the effectiveness of any plasma system designed for CO2 emissions reduction.  相似文献   

11.
UiO-66 amine functionalized was synthesized by solvothermal method. Post-synthetic modification of UiO-66-NH2 with piperazine, a known promoter to enhance the chemisorption rate of CO2 uptake, was carried out and analyzed to understand its crystalline structure, morphology and porous structure. Results show that piperazine is an effective agent for enhancing the capacity of absorption of CO2. This porous product exhibits an improved CO2 uptake at pressures up to 3000 kPa via physisorption and chemisorption mechanisms. The CH4 adsorption and desorption isotherms on UiO-66, UiO-66-NH2 and pip-UiO-66-NH2 at temperature of 298.15 K and pressures ranging from 0 to 5000 kPa were carried out. IAS theory for a mixture of 0.05 bar CO2, 0.85 bar CH4 and 0.1 bar other gas revealed a selectivity factor of 19.09 for CO2/CH4 from pip-UiO-66-NH2. Results show that these materials are effective adsorbents for CO2 and CH4 uptakes.  相似文献   

12.
The objective of the present work was to study the reforming of simulated natural gas via the nonthermal plasma process with the focus on the production of hydrogen and higher hydrocarbons. The reforming of simulated natural gas was conducted in an alternating current (AC) gliding arc reactor under ambient conditions. The feed composition of the simulated natural gas contained a CH4:C2H6:C3H8:CO2 molar ratio of 70:5:5:20. To investigate the effects of all gaseous hydrocarbons and CO2 present in the natural gas, the plasma reactor was operated with different feed compositions: pure CH4, CH4/He, CH4/C2H6/He, CH4/C2H6/C3H8/He and CH4/C2H6/C3H8/CO2. The results showed that the addition of gas components to the feed strongly influenced the reaction performance and the plasma stability. In comparisons among all the studied feed systems, both hydrogen and C2 hydrocarbon yields were found to depend on the feed gas composition in the following order: CH4/C2H6/C3H8/CO2 > CH4/C2H6/C3H8/He > CH4/C2H6/He > CH4/He > CH4. The maximum yields of hydrogen and C2 products of approximately 35% and 42%, respectively, were achieved in the CH4/C2H6/C3H8/CO2 feed system. In terms of energy consumption for producing hydrogen, the feed system of the CH4/C2H6/C3H8/CO2 mixture required the lowest input energy, in the range of 3.58 × 10−18–4.14 × 10−18 W s (22.35–25.82 eV) per molecule of produced hydrogen.  相似文献   

13.
A novel type of plasma reactor having a rotating electrode is proposed for CO2 reforming of methane without catalyst at room temperature and atmospheric pressure. Results indicated that employing rotating ground electrode leads to a stable discharge for any period of time. Effects of feed composition, feed flow rate, applied power and electrodes separation on the carbon dioxide and methane conversions as well as the products selectivity were investigated. Increasing CO2/CH4 molar ratio in the feed favors the reagents conversion and consequently promotes the formation of hydrogen and carbon monoxide. If the target product is hydrogen, it is proposed to operate the reactor at CO2/CH4 = 1 molar ratio and if the target product is carbon monoxide then CO2/CH4 = 3 molar ratio is the preferred option for feed composition. This reactor system has advantages of stable operation and high conversion ability. Also, the obtained syngas with flexible molar ratio of H2 to CO is suitable for vast industrial applications.  相似文献   

14.
A comparative study was carried out of the process of plasma chemical deposition of boron carbide from hydrogen plasma containing the mixtures of BF3 + CH4 and BCl3 + CH4 sustained by RF arc (13.56 MHz) discharge. It was shown that in the case of synthesis of B4C from a mixture of BF3 + CH4, carbon and complex coordination compound [X3B]?H+ (R3B·FH) are formed as the by-products of condensed products. In the case of synthesis of B4C from the BCl3 + CH4 mixture, the only condensed product is carbon. Mechanisms for the formation of boron carbide on the surface of heated electrodes are proposed. The main feature of these mechanisms is the preliminary deposition of a graphite layer from CH4 and then the precipitation of boron with the participation of the radicals BF2, BF and BCl. B4C samples were obtained and the impurity composition, morphology and structure of bulk boron carbide samples obtained using both of its halides were studied. It was found that in both cases a carbon phase is present in boron carbide samples. The main impurities entering the B4C, in the case of using a mixture of BF3 + CH4, is silicon, and in the case of a mixture of BCl3 + CH4, is tungsten.  相似文献   

15.
To decompose carbon dioxide, which is a representative greenhouse gas, a 3-phase gliding arc plasmatron device was designed and manufactured to examine the decomposition of CO2, either alone or in the presence of methane with and without water vapour. The changes in the amount of carbon dioxide feed rate, the methane to carbon dioxide ratio, the steam to carbon dioxide ratio, and the methane to steam ratio were used as the parameters. The carbon dioxide conversion rate, energy decomposition efficiency (EDE), carbon monoxide and hydrogen selectivity, and produced gas concentration were also investigated. The maximum values of the carbon dioxide conversion rate, which is a key indicator of carbon dioxide decomposition, in different cases were compared. The maximum carbon dioxide conversion rate was 12.3 % when pure carbon dioxide was supplied; 34.5 % when methane was injected as a reforming additive; 7.8 % when steam was injected as a reforming additive; and 43 % when methane and steam were injected together. Therefore, this could be explained that the methane-and-steam injection showed the highest carbon dioxide decomposition, showing low EDE as 0.01 L/min W. Furthermore, the plasma produced carbon-black was compared with commercial carbon-black chemicals through Raman spectroscopy, surface area measurement and scanning electron microscopy. It was found that the carbon-black that was produced in this study has the high conductivity and large specific surface area. Our product makes it suitable for special electric materials and secondary battery materials applications.  相似文献   

16.
Dry reforming of CH4 with CO2 to produce syngas was investigated in a plasma reactor without catalysts at atmospheric pressure. The reactants passed through the plasma zone and reacted in milliseconds with high conversions and selectivity due to the localized high temperature. The results showed that both conversions and selectivity were higher when using a DC arc discharge than using a pulsed DC arc. Increasing the input energy density promoted the conversions of reactants. At an input power of 204 W, the conversions of CO2 and CH4 reached 99.3 and 99.6%, respectively, and the selectivity to products was almost 100%, where the molar ratio of CO2/CH4 was 1 with the reactants flow rate of 100 ml/min. Very little coke was formed during the course of reaction. Key parameters such as the pulse frequency, the input power and the total feed flow rate were studied to find the optimum operating condition.  相似文献   

17.
Electrical discharges are increasingly used to dissociate CO2 in CO and O2. This reaction is the first step in the way for the synthesis of value-added compounds from CO2 by using renewable electricity. If efficient, this technology might allow at the same time recycling CO2 and storing renewable energy in chemical form. At present, while the dissociation degree is measured in the reactor exhaust, little is experimentally known about the dissociation kinetics in the discharge and post-discharge. This knowledge is however critical to increasing the overall efficiency of the plasma process. To estimate the time dependence of the CO2 dissociation following a discharge event, we have coupled a LIF diagnostics to a nanosecond repetitively pulsed discharge in a mixture of CO2 and H2O. This paper discusses a procedure to obtain data on the time evolution of the CO2 dissociation, its limits and future perspectives. In addition, the local gas temperature is measured as well. We find that a few microseconds after the discharge pulse, CO2 is highly dissociated with a temperature around 2500 K. In about 100 µs, the temperature decreases at about 1500 K while the dissociation is reduced by about a factor of three.  相似文献   

18.
A H3PW12O40/ZrO2 catalyst for effective dimethyl carbonate (DMC) formation via methanol carbonation was prepared using the sol–gel method. X-ray photoelectron spectra showed that reactive and dominant (63%) W(VI) species, in WO3 or H2WO4, enhanced the catalytic performances of the supported ZrO2. The mesoporous structure of H3PW12O40/ZrO2 was identified by nitrogen adsorption–desorption isotherms. In particular, partial sintering of catalyst particles in the duration of methanol carbonation caused a decrease in the Brunauer–Emmett–Teller surface area of the catalyst from 39 to 19 m2/g. The strong acidity of H3PW12O40/ZrO2 was confirmed by the desorption peak observed at 415 °C in NH3 temperature-programmed desorption curve. At various reaction temperatures (T?=?110, 170, and 220 °C) and CO2/N2 volumetric flow rate ratios (CO2/N2?=?1/4, 1/7, and 1/9), the calculated catalytic performances showed that the optimal methanol conversion, DMC selectivity, and DMC yield were 4.45, 89.93, and 4.00%, respectively, when T?=?170 °C and CO2/N2?=?1/7. Furthermore, linear regression of the pseudo-first-order model and Arrhenius equation deduced the optimal rate constant (4.24?×?10?3 min?1) and activation energy (Ea?=?15.54 kJ/mol) at 170 °C with CO2/N2?=?1/7 which were favorable for DMC formation.  相似文献   

19.
Dry reforming of CH4/CO2 provides an attractive route to convert greenhouse gas into syngas; however, the resistance to sintering and coking of catalyst remains a fundamental challenge at high operation temperatures. Here we create active and durable metal–oxide interfaces in porous single-crystalline (PSC) CeO2 monoliths with in situ exsolved single-crystalline (SC) Ni particles and show efficient dry reforming of CH4/CO2 at temperatures as low as 450 °C. We show the excellent and durable performance with ≈20 % of CH4 conversion and ≈30 % of CO2 conversion even in a continuous operation of 240 hours. The well-defined active metal–oxide interfaces, created by exsolving SC Ni nanoparticles from PSC NixCe1?xO2 to anchor them on PSC CeO2 scaffolds, prevent nanoparticle sintering and enhance the coking resistance due to the stronger metal–support interactions. Our work would enable an industrially and economically viable path for carbon reclamation, and the technique of creating active and durable metal–oxide interfaces in PSC monoliths could lead to stable catalyst designs for many challenging reactions.  相似文献   

20.
Global warming, fossil fuel depletion and fuel price increases have motivated scientists to search for methods for the storage and reduction of the amount of greenhouse gases, especially CO2. The hydrogenation process has been introduced as an emerging method of CO2 capture and convertion into value-added products. In this study, new types of catalysts are introduced for CO2 hydrogenation and are compared based on catalytic activity and product selectivity. The physical properties of the samples are specified using BET. Iron catalysts supported on γ-Al2O3 with different metal promoters (X = Ni, K, Mn, Cu) are prepared through the impregnation method. Moreover, Fe–Ni catalysts supported on HZSM5-Al2O3 and Ce–Al2O3 are synthesized. Samples are reduced by pure H2 and involved in hydrogenation reaction in a fixed bed reactor (H2/CO2 = 3, total pressure = 10 MPa, temperature = 523 K, GHSV = 2000, 1250 nml/min). All catalysts provide high conversion in hydrogenation reactions and the results illustrate that the selectivity of light hydrocarbons is higher than that of methane and CO. It is found that Ni has a promoting effect on the conversion fluctuations throughout the reaction with 66.13% conversion. Using combined supported catalysts leads to enhancing catalytic performance. When Fe–Ni/γ–Al2O3—HZSM5 is utilized, CO2 conversion is 81.66% and the stability of the Fe–Ni catalyst supported on Al2O3 and Ce–Al2O3 furthey improves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号