首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) was employed to investigate the interaction of cholesterol with the headgroups of dimyristoylphosphatidycholine (DMPC) molecules under a static electric field. DMPC/cholesterol (7:3 molar ratio) mixtures form a bilayer on a Au(111) electrode surface by fusion and spreading of small unilamellar vesicles. PM-IRRAS experiments provided detailed information concerning the conformation and hydration of headgroups of DMPC bilayers in the presence and absence of 30% cholesterol. The presence of 30% cholesterol increases the space between the headgroups of DMPC molecules and hence increases the hydration of the DMPC/cholesterol mixed bilayer. The conformational state of the headgroups of DMPC molecules in the mixed bilayer is also significantly changed. The phosphate group is closer to the surface compared with the pure DMPC bilayer. The conformation of the -O-C-C-N moiety changes from gauche to trans in the presence of cholesterol.  相似文献   

2.
Membrane fusion is a key event in many biological processes. The fusion process, both in vivo and in vitro, is induced by different agents which include mainly proteins and peptides. For protein- and peptide-mediated membrane fusion, conformational reorganization serves as a driving force. Small drug molecules do not share this advantage; hence, drug induced membrane fusion occurring in absence of any other fusogenic agent and at physiologically relevant concentration of the drugs is a very rare event. To date, only three drugs, namely, meloxicam (Mx), piroxicam (Px), and tenoxicam (Tx), belonging to the oxicam group of non steroidal anti-inflammatory drugs (NSAIDs), have been shown by us to induce fusion at very low drug to lipid ratio without the aid of any other fusogenic agent. In our continued effort to understand the interplay of different physical and chemical parameters of both the participating drugs and the membrane on the mechanism of this drug induced membrane fusion, we present here the effect of increase in orientational order of the lipid chains and increase in head group spacing. This is achieved by studying the effect of low concentration cholesterol (<10 mol %) at temperatures above the chain-melting transition. Low concentration cholesterol (<10 mol %), above the gel to fluid transition temperature, is mainly known to increase orientational order of the lipid chains and increase head group spacing. To isolate the effect of these parameters, small unilameller vesicles (SUVs) formed by dimyristoylphosphatidylcholine (DMPC) with an average diameter of 50-60 nm were used as simple model membranes. Fluorescence assays were used to probe the time dependence of lipid mixing, content mixing, and leakage and also used to determine the partitioning of the drugs in the membrane bilayer. Differential scanning calorimetry (DSC) was used to study the effect of drugs in the presence of cholesterol on the chain-melting temperature which reflects the fluidization effect of the hydrophobic tail region of the bilayer. Our results show contradictory effect of low concentration cholesterol on the fusion induced by the three drugs, which has been explained by parsing the effect of orientational order and increase in head group spacing on the fusion process.  相似文献   

3.
The protective properties of trehalose on cholesterol-containing lipid dipalmitoylphosphatidylcholine (DPPC) bilayers are studied through molecular simulations. The ability of the disaccharide to interact with the phospholipid headgroups and stabilize the membrane persists even at high cholesterol concentrations and restricts some of the changes to the structure that would otherwise be imposed by cholesterol molecules. Predictions of bilayer properties such as area per lipid, tail ordering, and chain conformation support the notion that the disaccharide decreases the main melting transition in these multicomponent model membranes, which correspond more closely to common biological systems than pure bilayers. Molecular simulations indicate that the membrane dynamics are slowed considerably by the presence of trehalose, indicating that high sugar concentrations would serve to avert possible phase separations that could arise in mixed phospholipid systems. Various time correlation functions suggest that the character of the modifications in lipid dynamics induced by trehalose and cholesterol is different in the hydrophilic and hydrophobic regions of the membrane.  相似文献   

4.
Intermolecular nuclear Overhauser effects (NOEs) between the integral outer membrane protein OmpX from Escherichia coli and small bicelles of dihexanoyl phosphatidylcholine (DHPC) and dimyristoyl phosphatidylcholine (DMPC) give insights into protein-lipid interactions. Intermolecular NOEs between hydrophobic tails of lipid and protein in the bicelles cover the surface area of OmpX forming a continuous cylindric jacket of approximately 2.7 nm in height. These NOEs originate only from DMPC molecules, and no NOEs from DHPC are observed. Further, these NOEs are mainly from methylene groups of the hydrophobic tails of DMPC, and only a handful of NOEs arise from methyl groups of the hydrophobic tails. The observed contacts indicate that the hydrophobic tails of DMPC are oriented parallel to the surface of OmpX and thus DMPC molecules form a bilayer in the vicinity of the protein. Thus, a bilayer exists in the small bicelles not only in the absence of but also in the presence of a membrane protein. In addition, the number of NOEs between the polar head groups of lipid molecules and protein is increased in the bicelles compared with those in micelles. This observation may be due to the closely packed head groups of the bilayer. Moreover, irregularity of hydrophobic interactions in the middle of the bilayer environment was observed. This observation together with the interactions between polar head groups and proteins gives a possible rationale for structural and functional differences of membrane proteins solubilized in micelles and in bilayer systems and hints at structural differences between protein-free and protein-loaded bilayers.  相似文献   

5.
梁映秋  卢先春  李春 《化学学报》2000,58(7):742-747
提出普通表面活性剂(单链两亲分子)亲水头基相互作用诱导疏水尾链平行聚集形成双分子膜的新机制。设计和合成了系列单烷基取代乙二胺C~nH~2~n~+~1NHC~2H~4NH~2(n=8,12,14,16,18)。通过电镜形态,分散液凝胶/液晶相变和对应铸膜的二维双层结构,表明单链两亲分子头基相互作用和脂链引入刚性片断一样,两者形成的双分子膜具有类似的结构和性能;展示了各体系取代乙二胺双层结构和性能的密切联系。指出了广泛认同的单链两亲分子形成双分子膜必须引入刚性片断的单一成膜机制的片面性,为组装新一类功能头基表面活性剂双分子膜独辟蹊径。  相似文献   

6.
We report the utilization of magnetically aligned phospholipid bilayers (bicelles) to study the effects of cholesterol in phospholipid bilayers for both chain perdeuterated DMPC and partially deuterated alpha-[2,2,3,4,4,6-d(6)]-cholesterol using (2)H solid-state NMR spectroscopy. The quadrupolar splittings at 40 degrees C were 25.5 and 37.7 kHz, respectively, for the 2,4-(2)H(eq) and 2,4-(2)H(ax) deuterons when the bilayer normal of the discs was aligned perpendicular to the static magnetic field. The quadrupolar splittings were doubled when Yb(3+) ions were added to flip the bicelles 90 degrees such that the bilayer normal was colinear with the magnetic field. The results suggest that cholesterol is incorporated into the bicelle discs. For chain perdeuterated DMPC-d(54), incorporated into DMPC-DHPC bicelle discs, the individual quadrupolar splittings of the methylene and methyl groups doubled on going from the perpendicular to the parallel alignment. Also, the presence of cholesterol increased the overall ordering of the acyl chains of the phospholipids. S(CD) (i) calculations were extracted directly from the (2)H quadrupolar splittings of the chain perdeuterated DMPC. The order parameter, S(CD) (i), calculations clearly indicated an overall degree of ordering of the acyl chains in the presence of cholesterol. We also noted a disordering effect at higher temperatures. This study demonstrates the ease with which (2)H order parameters can be calculated utilizing magnetically aligned phospholipid bilayers when compared with randomly dispersed membrane samples.  相似文献   

7.
Electron spin-echo envelope modulation (ESEEM) spectroscopy of phospholipids spin-labeled systematically down the sn-2 chain was used to detect the penetration of water (D2O) into bilayer membranes of dipalmitoyl phosphatidylcholine with and without 50 mol % cholesterol. Three-pulse stimulated echoes allow the resolution of two superimposed 2H-ESEEM spectral components of different widths, for spin labels located in the upper part of the lipid chains. Quantum chemical calculations (DFT) and ESEEM simulations assign the broad spectral component to one or two D2O molecules that are directly hydrogen bonded to the N-O group of the spin label. Classical ESEEM simulations establish that the narrow spectral component arises from nonbonded water (D2O) molecules that are free in the hydrocarbon chain region of the bilayer membrane. The amplitudes of the broad 2H-ESEEM spectral component correlate directly with those of the narrow component for spin labels at different positions down the lipid chain, reflecting the local H-bonding equilibria. The D2O-ESEEM amplitudes decrease with position down the chain toward the bilayer center, displaying a sigmoidal dependence on position that is characteristic of transmembrane polarity profiles established by other less direct spin-labeling methods. The midpoint of the sigmoidal profile is shifted toward the membrane center for membranes without cholesterol, relative to those with cholesterol, and the D2O-ESEEM amplitude in the outer regions of the chain is greater in the presence of cholesterol than in its absence. For both membrane types, the D2O amplitude is almost vanishingly small at the bilayer center. The water-penetration profiles reverse correlate with the lipid-chain packing density, as reflected by 1H-ESEEM intensities from protons of the membrane matrix. An analysis of the H-bonding equilibria provides essential information on the binding of water molecules to H-bond acceptors within the hydrophobic interior of membranes. For membranes containing cholesterol, approximately 40% of the nitroxides in the region adjacent to the lipid headgroups are H bonded to water, of which ca. 15% are doubly H bonded. Corresponding H-bonded populations in membranes without cholesterol are ca. 20%, of which ca. 6% are doubly bonded.  相似文献   

8.
We studied the influence of 5 kDa poly(acrylic acid) (PAA) on the phase state, thermal properties, and lateral diffusion in bilayered systems of dimyristoylphosphatidylcholine (DMPC) using (31)P NMR spectroscopy, differential scanning calorimetry (DSC), (1)H NMR with a pulsed field gradient, and (1)H nuclear Overhauser enhancement spectroscopy (NOESY). The presence of PAA does not change the lamellar structure of the system. (1)H MAS NOESY cross-peaks observed for the interaction between lipid headgroups and polyion protons demonstrated only surface PAA-biomembrane interaction. Small concentrations of PAA (up to ~4 mol %) lead to the appearance of a new lateral phase with a higher main transition temperature, a lower cooperativity, and a lower enthalpy of transition. Higher concentrations lead to the disappearance of measurable thermal effects. The lateral diffusion coefficient of DMPC and the apparent activation energy of diffusion gradually decreased at PAA concentrations up to around 4 mol %. The observed effects were explained by the formation of at least two types of PAA-DMPC lateral complexes as has been described earlier (Fujiwara, M.; Grubbs, R. H.; Baldeschwieler, J. D. J. Colloid Interface Sci., 1997, 185, 210). The first one is characterized by a stoichiometry of around 28 lipids per polymer, which corresponds to the adsorption of the entire PAA molecule onto the membrane. Lipid molecules of the complex are exchanged with the "pure" lipid bilayer, with the lifetime of the complex being less than 0.1 s. The second type of DMPC-PAA complex is characterized by a stoichiometry of 6 to 7 lipids per polymer and contains PAA molecules that are only partially adsorbed onto the membrane. A decrease in the DMPC diffusion coefficient and activation energy for diffusion in the presence of PAA was explained by the formation of a new cooperative unit for diffusion, which contains the PAA molecule and several molecules of lipids.  相似文献   

9.
A lipid bilayer deposited on an electrode surface can serve as a benchmark system to investigate lipid–protein interactions in the presence of physiological electric fields. Recoverin and myelin‐associated glycoprotein (MAG) are used to study the impact of strong and weak protein–lipid interactions on the structure of model lipid bilayers, respectively. The structural changes in lipid bilayers are followed using electrochemical polarization modulation infrared reflection–absorption spectroscopy (PM IRRAS). Recoverin contains a myristoyl group that anchors in the hydrophobic part of a cell membrane. Insertion of the protein into the 1,2‐dimyristoyl‐sn‐glycero‐3‐phosphatidylcholine (DMPC)–cholesterol lipid bilayer leads to an increase in the capacitance of the lipid film adsorbed on a gold electrode surface. The stability and kinetics of the electric‐field‐driven adsorption–desorption process are not affected by the interaction with protein. Upon interaction with recoverin, the hydrophobic hydrocarbon chains become less ordered. The polar head groups are separated from each other, which allows for recoverin association in the membrane. MAG is known to interact with glycolipids present on the surface of a cell membrane. Upon probing the interaction of the DMPC–cholesterol–glycolipid bilayer with MAG a slight decrease in the capacity of the adsorbed lipid film is observed. The stability of the lipid bilayer increases towards negative potentials. At the molecular scale this interaction results in minor changes in the structure of the lipid bilayer. MAG causes small ordering in the hydrocarbon chains region and an increase in the hydration of the polar head groups. Combining an electrochemical approach with a structure‐sensitive technique, such as PM IRRAS, is a powerful tool to follow small but significant changes in the structure of a supramolecular assembly.  相似文献   

10.
The properties of the interatomic voids present in fully hydrated dimyristoylphosphatidylcholine (DMPC)-cholesterol mixed membranes of different compositions are analyzed in detail using a generalized variant of the Voronoi-Delaunay method on the basis of computer simulation results. The systems investigated are chosen from both sides of the DMPC-cholesterol miscibility gap; the pure DMPC bilayer has also been included in the analysis as a reference system. The results obtained show that the empty space is organized in a more compact way, forming larger voids in the presence than in the absence of cholesterol. The voids located in the region of the rigid cholesterol rings become, on average, less spherical, oriented more parallel with the membrane normal axis with increasing cholesterol concentration, whereas an opposite effect of cholesterol is observed in the middle of the membrane among the chain terminal methyl groups. In general, the preferential orientation of the voids is found to strongly correlate with that of the molecules in the hydrocarbon phase of the membranes. The membranes are found to contain rather large voids, the volume of which can be an order of magnitude larger than the largest spherical cavities present in the systems. These voids are elongated or branching channels rather than big empty holes. The voids located among the DMPC and cholesterol molecules are lying preferably parallel with the membrane normal axis. The existence of such empty channels can be of great importance in the cross-membrane permeation of small, uncharged penetrants, in particular, of polar molecules.  相似文献   

11.
We studied effects of chloroform and carbon tetrachloride on bilayer membranes of dimyristoyl-phosphatidylcholine (DMPC) and egg yolk phosphatidylcholine (Egg-PC) by birefringence, dynamic light scattering and fluorescence methods. It is shown that interference light due to the membrane birefringence considerably decreases by addition of the organohalogen compounds for both lipid membranes, indicating a significant decrease in membrane order. In addition, results of dynamic light scattering and turbidity measurements show a rupture of multilamellar DMPC vesicles induced by addition of chloroform at concentrations above 0.2 v/v%. No rupture of the vesicles is observed within the limit of solubility of carbon tetrachloride in water, but excessive addition of carbon tetrachloride (above 0.2 v/v%) induces the vesicle rupture. Chain orientational order was estimated from the interference light intensity at low concentrations of the organohalogen compounds without the occurrence of the vesicle rupture. The estimation shows a monotonic decrease in the chain order with increasing the concentration. The decreases in DMPC chain order by chloroform and by carbon tetrachloride are about 17% at 0.2 v/v% and 23% at 0.05 v/v%, respectively. The reduction in the chain order is correlated with an increase in the membrane fluidity observed by excimer fluorescence of pyrene incorporated to the membrane. Behavior of membrane disordering of Egg-PC is approximately similar with that of DMPC. This implies the strong interaction between the organohalogen compounds and the lipid chains, whether or not the bilayer has the vacancy resulted from unsaturated double bonds and different chains in length. The results of this work suggest that damages of biological membranes by chloroform and tetrachloride are not only induced by a direct attack on proteins but also by a significant membrane disorder.  相似文献   

12.
In bicellar dispersions of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC), the transition from isotropic reorientation to partial orientational order, on warming, is known to coincide with a sharp increase in viscosity. In this work, cone-and-plate rheometry, (2)H NMR spectroscopy, and quadrupole echo decay observations have been used to obtain new insights into the dynamics of phases observed in bicellar DMPC/DHPC mixtures. Samples with 25% of the DMPC component deuterated were used to correlate rheological measurements with phase behavior observed by (2)H NMR spectroscopy. Mixtures containing only normal DMPC (DMPC/DHPC) or only chain perdeuterated DMPC (DMPC-d(54)/DHPC) were used to refine rheology and quadrupole echo decay measurements respectively. The viscosity peaked at 4-9 Pa·s, just above the isotropic-to-nematic transition, and then dropped as samples were warmed through the nematic-to-lamellar transition. Quadrupole echo decay times above the nematic-to-lamellar transition were significantly longer than typically observed in the liquid crystalline phase of saturated lipid multilamellar vesicles. This may indicate a damping of slow bilayer undulations resulting from the coupling of opposite bilayer surfaces by DHPC-lined pores.  相似文献   

13.
Phenyltin compounds are known to be biologically active and, whan widely spread, are potentially hazardous. As their chemical structure suggests, they interact with the lipid fraction of the cell membrane. Their effect on the model phosphatidylcholine/cholesterol bilayer has been studied using fluorescence and 1H NMR techniques. The change in the fluorescein‐PE fluorescence intensity indicates the amount of charge added by phenyltin compounds to the membrane surface. Although the presence of cholesterol alone does not alter membrane interface properties measured with fluorescein‐PE, 1H NMR measurements show that lipid mobility is altered throughout the hydrophobic core of the membrane. Cholesterol in the phosphatidylcholine bilayer does not alter tetraphenyltin interaction with the membrane, though the effect of diphenyltin dichloride, penetrating deeply into the hydrophobic core of the membrane, is reduced when the amount of cholesterol in the membrane is increased, suggesting decreased compound adsorption. Triphenyltin chloride has a qualitatively different effect on the lipid bilayer, when observed using this fluorescence technique. The adsorption of triphenyltin onto the phosphatidylcholine/cholesterol membrane induces a lateral phase separation of membrane components. Since triphenyltin chloride is known to be adsorbed onto the interface of the lipid bilayer, this separation mechanism must originate in this region and does not seem to be electrostatic in origin. 1H NMR measurements have confirmed the observation that these two active phenyltin compounds interact with the phosphatidylcholine/cholesterol membrane differently, disrupting different regions of the bilayer to a different degree. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
Diacylglycerols (DAGs) are important second messengers in biomembranes, and they can activate protein kinase C and many other enzymes and receptors. However, their interactions with cholesterol and other lipids have not been previously studied using molecular dynamics (MD) simulation. In this study, nine independent atomistic MD simulations were performed to specifically investigate the interactions between di16:0DAG, 16:0,18:1-phosphatidylcholine (POPC), and cholesterol. Despite of their substantial differences in chemical structure, DAG and cholesterol produce some very similar effects in POPC bilayers: increasing acyl chain order and bilayer thickness, reducing volume-per-lipid, and decreasing lateral diffusion of molecules. More significantly, DAG also produces a strong "condensing effect" in PC bilayers. In comparison, cholesterol is more effective than DAG in producing the above effects. The driving force for the condensing effect is their molecular shape: DAG and cholesterol both have small polar headgroups and large hydrophobic bodies. In a lipid bilayer, in order to avoid the unfavorable exposure of their hydrophobic parts to water, neighboring phospholipid headgroups move toward cholesterol or DAG to provide cover. Thus, seemingly complex interactions between DAG, cholesterol and phospholipid can be clearly explained using the Umbrella Model. Our simulations confirmed the hypothesis that DAG increases the spacing between phospholipid headgroups, which is important for activating protein kinase C and other enzymes. Interestingly, our simulations also show that the conventional wisdom that the spacing created by a DAG is directly above the DAG molecule is incorrect; instead, the largest spacing usually occurs between the first and the second nearest-neighbor PC headgroups from a DAG, due to the umbrella effect.  相似文献   

15.
In deuterium ((2)H) NMR spectroscopy of fluid lipid bilayers, the average structure is manifested in the segmental order parameters (S(CD)) of the flexible molecules. The corresponding spin-lattice relaxation rates (R(1Z) depend on both the amplitudes and the rates of the segmental fluctuations, and indicate the types of lipid motions. By combining (2)H NMR order parameter measurements with relaxation studies, we have obtained a more comprehensive picture of lipids in the liquid-crystalline (L(alpha)) state than formerly possible. Our data suggest that a lipid bilayer constitutes an ordered fluid, in which the phospholipids are grafted to the aqueous interface via their polar headgroups, whereas the fatty acyl chains are in effect liquid hydrocarbon. Studies of (2)H-labeled saturated lipids indicate their R(1Z) rates and S(CD) order parameters are correlated by a model-free, square-law functional dependence, signifying the presence of relatively slow bilayer fluctuations. A new composite membrane deformation model explains simultaneously the frequency (magnetic field) dependence and the angular anisotropy of the relaxation. The results imply the R(1Z) rates are due to a broad spectrum of 3-D collective bilayer excitations, together with effective axial rotations of the lipids. For the first time, NMR relaxation studies show that the viscoelastic properties of membrane lipids at megahertz frequencies are modulated by the lipid acyl length (bilayer thickness), polar headgroups (bilayer interfacial area), inclusion of a nonionic detergent (C(12)E(8)), and the presence of cholesterol, leading to a range of bilayer softness. Our findings imply the concept of elastic deformation is relevant on lengths approaching the bilayer thickness and less (the mesoscopic scale), and suggest that application of combined R(1Z) and S(CD) studies of phospholipids can be used as a simple membrane elastometer. Heuristic estimates of the bilayer bending rigidity kappa and the area elastic modulus K(a) enable comparison to other biophysical studies, involving macroscopic deformation of thin membrane lipid films. Finally, the bilayer softness may be correlated with the lipid diversity of biomembranes, for example, with regard to membrane curvature, repulsive interactions between bilayers, and lipid-protein interactions.  相似文献   

16.
We report a combined theoretical and experimental study on the single-molecule interaction of fullerenes with phospholipid membranes. We studied pristine C(60) (1) and two N-substituted fulleropyrrolidines (2 and 3), one of which (3) bore a paramagnetic nitroxide group. Theoretical predictions of fullerene distribution and permeability across lipid bilayers were combined with electron paramagnetic resonance (EPR) experiments in aligned DMPC/DHPC bicelles containing the paramagnetic fulleropyrrolidine 3 or either one of the diamagnetic fullerenes together with spin-labeled lipids. We found that, at low concentrations, fullerenes are present in the bilayer as single molecules. Their preferred location in the membrane is only slightly influenced by the derivatization: all derivatives were confined just below the hydrophilic/hydrophobic interface, because of the key role played by dispersion interactions between the highly polarizable fullerene cage and the hydrocarbon chains, which are especially tight within this region. However, the deviation from spherical shape is sufficient to induce a preferential orientation of 2 and 3 in the membrane. We predict that monomeric fullerenes spontaneously penetrate the bilayer, in agreement with the results of molecular dynamics simulations, but we point out the limits of the currently used permeability model when applied to hydrophobic solutes.  相似文献   

17.
Atomistic molecular dynamics (MD) simulations have been carried out at 30 degrees C on a fully hydrated liquid crystalline lamellar phase of dimyrystoylphosphatidylcholine (DMPC) lipid bilayer with embedded ethanol molecules at 1:1 composition, as well as on the pure bilayer phase. The ethanol molecules are found to exhibit a preference to occupy regions near the upper part of the lipid acyl chains and the phosphocholine headgroups. The calculations revealed that the phosphocholine headgroup dipoles (P- --> N+) of the lipids prefer to orient more toward the aqueous layer in the presence of ethanol. It is noticed that the ethanol molecules modify the dynamic properties of both lipids as well as the water molecules in the hydration layer of the lipid headgroups. Both the in-plane "rattling" and out-of-plane "protrusion" motions of the lipids have been found to increase in the presence of ethanol. Most importantly, it is observed that the water molecules within the hydration layer of the lipid headgroups exhibit faster translational and rotational motions in the presence of ethanol. This arises due to faster dynamics of hydrogen bonds between lipid headgroups and water in the presence of ethanol.  相似文献   

18.
The effects of cholesterol, a lipid mostly found in the sarcolemmal membranes, on the interaction of amiodarone with synthetic models of dimyristoylphosphatidylcholine (DMPC) and with native models of mitochondria and brain microsomes was studied. Alterations on the structural order of lipids were assessed by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) probing the bilayer core, and of the propionic acid derivative 3-(p-(6-phenyl)-1,3,5-hexatrienyl)phenylpropionic acid (DPH-PA) probing the outer regions of the bilayer. As detected by the probes and according to classic observations, cholesterol progressively increased the molecular order in the fluid phase of DMPC. Additionally, it modulated the type and extension of amiodarone effects. For low cholesterol concentrations (≤10–15 mol%), amiodarone (50 μM) ordered DMPC bilayers and the effects were almost identical to those observed in pure DMPC. For higher cholesterol concentrations, amiodarone ordering effects decreased slightly and faded for cholesterol concentrations as high as 25 and 30 mol%, when detected by DPH-PA and DPH, respectively. Above these high cholesterol concentrations, a crossover from ordering to disordering effects of amiodarone was apparent, either in the upper region of the bilayer or the hydrophobic core. The effects of amiodarone in native membranes of mitochondria and brain microsomes, in which "native" cholesterol accounts for about 0 and 25 mol%, respectively, correlated reasonably with the results in models of synthetic lipids. There is a close relationship between cholesterol concentration and amiodarone effects, in either synthetic models or native model membranes. Therefore, it may be predicted that the lipid physicochemical properties regulated by cholesterol concentration will also modulate the effects of amiodarone in sarcolemma.  相似文献   

19.
Amphotericin B (AmB) is a well-known polyene macrolide antibiotic used to treat systemic fungal infections. According to a well-documented hypothesis, molecules of AmB form ionic membrane channels that are responsible for chemotherapeutic action. These channels disturb the barrier function of the cell membrane which, in consequence, leads to cell death. The presence of sterols in the cell membrane is necessary for full manifestation of the antibiotic's ionophoric activity, at least in vivo. Ergosterol-containing fungal membranes are targeted more efficiently by AmB than mammalian membranes containing cholesterol. However, a similar level of disturbance of fungal and mammalian membranes is responsible for serious toxicity of the antibiotic. Due to the importance of AmB and lack of better antifungal alternatives, the search for new less toxic derivatives of this antibiotic still continues. Therefore, studies of the AmB-membrane interaction are very important. The present work constitutes a continuation of a broad program of study on AmB mode of action in our group. In particular, molecular dynamics simulations of AmB monomers inside the bilayers of three different compositions (pure dimiristoylphosphatidylcholine (DMPC) and DMPC bilayer containing approximately 25 mol % of cholesterol or ergosterol) were carried out. In general, analysis of generated trajectories resulted in identifying many significant differences in the behavior of AmB monomers depending on the membrane environment. In particular, it was established that the antibiotic increases the internal order of DMPC bilayer containing 25 mol % of cholesterol, while it has no effect on the order of the bilayer with the same amount of ergosterol. Performed calculations also revealed that relatively rigid and elongated AmB molecules exhibit higher affinity toward the sterol-containing lo phases and, therefore, may be cumulated in ordered membrane domains (e.g., lipid rafts). Since the partition coefficient between the ld and lo phase appears to be greater in the case of the ergosterol- compared to cholesterol-containing membrane, this effect can be also discussed as the possible origin of AmB-selective toxicity and indirect sterol involvement in expression of AmB activity.  相似文献   

20.
A combination of the Langmuir-Blodgett and Langmuir-Schaefer techniques has been used to build a 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) bilayer at a Au(111) electrode surface with hydrogen-substituted acyl chains in the top leaflet (solution side) and deuterium-substituted acyl chains in the bottom leaflet (gold side). Polarization modulation infrared reflection-absorption spectroscopy was used to determine changes in the conformation and orientation of the acyl chains of DMPC caused by the incorporation of two selected perfluorinated compounds, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), into the top leaflet of the bilayer. The incorporation of perfluorinated compounds into the DMPC bilayer caused a broadening of the methylene peaks and a shift in the methylene band positions toward higher frequencies. In addition, the tilt angle of the acyl chains decreased in comparison to the tilt angle of a pure DMPC bilayer. The reported tilt angles were smaller upon insertion of PFOS ( approximately 24 degrees ) than in the presence of PFOA ( approximately 30 degrees ). Overall, the results show that the incorporation of the perfluorinated acids has an effect on the bilayer similar to that of cholesterol by increasing the membrane fluidity and thickness due to a decrease in the tilt angle of the acyl chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号