首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This article presents the direct numerical simulation (DNS) of mixed convection turbulent heat transfer in a horizontal channel case for liquid lead. Cartesian mesh is used and the incompressible Navier-Stokes equations are discretized with highly accurate finite difference sixth-order compact schemes to perform the DNS. The influence of mixed convection in liquid metal with Prandtl number equal to 0.025 and Reynolds number equal to 4667 has been studied by varying the Richardson number (Ri = 0, 0.25, 0.50, 1.00). The obtained results are extensively analyzed and discussed in this article. In particular, large-scale circulation is observed under the influence of buoyancy. Compared to the forced convection case (Ri = 0), stronger velocity fluctuations are noticed that highlight the fact that turbulence is strongly enhanced with the increasing buoyancy. It also proves that the thermal plumes rising up from the hot wall of the channel activate the cross-stream eddies. Moreover, temperature fluctuations are found to be more homogeneously distributed with increasing buoyancy effects and mixing is more effective in the center of the channel. In addition, compared with forced convection, mixed convection has shown enlargement of the large-scale structures that only appear in the temperature field for low Prandtl number fluids. Extensive results of flow and temperature fields are analyzed and presented.  相似文献   

2.
Direct numerical simulations of turbulent heat transfer in a channel flow are performed to investigate the effects of Reynolds and Prandtl numbers on higher-order turbulence statistics such as a turbulent Prandtl number and the budget for the dissipation rate of the temperature variance. The Reynolds numbers based on the friction velocity and the channel half width are 180 and 395, and the molecular Prandtl numbers Pr’s 0.71–10.0. Careful attention is paid to ensure accuracy of the higher-order statistics through the use of a high spatial resolution comparable to Batchelor length scale. The wall-asymptotic value of the turbulent Prandtl number is mostly independent of Reynolds number for the current range of Pr’s. The budget for the dissipation rate of the temperature variance has been computed, and the negligible effect of a Reynolds number on the sum of all source and sink terms in near-wall region in the current computational range is found. This result is quite similar to the one in the budget for the dissipation rate of turbulent energy. In addition, a priori test for existing models is also performed to assess the Pr dependence on the individual terms and their summations in the budget.  相似文献   

3.
M. Kumari  G. Nath 《Meccanica》2014,49(5):1263-1274
The steady mixed convection flow and heat transfer from an exponentially stretching vertical surface in a quiescent Maxwell fluid in the presence of magnetic field, viscous dissipation and Joule heating have been studied. The stretching velocity, surface temperature and magnetic field are assumed to have specific exponential function forms for the existence of the local similarity solution. The coupled nonlinear ordinary differential equations governing the local similarity flow and heat transfer have been solved numerically by Chebyshev finite difference method. The influence of the buoyancy parameter, viscous dissipation, relaxation parameter of Maxwell fluid, magnetic field and Prandtl number on the flow and heat transfer has been considered in detail. The Nusselt number increases significantly with the Prandtl number, but the skin friction coefficient decreases. The Nusselt number slightly decreases with increasing viscous dissipation parameter, but the skin friction coefficient slightly increases. Maxwell fluid reduces both skin friction coefficient and Nusselt number, whereas buoyancy force enhances them.  相似文献   

4.
The mixed convection flow and heat transfer from an exponentially stretching vertical surface in a quiescent fluid is analyzed using similarity solution technique. Wall temperature and stretching velocity are assumed to have specific exponential function forms. The influence of buoyancy along with viscous dissipation on the convective transport in the boundary layer region is analyzed in both aiding and opposing flow situations. The flow is governed by the mixed convection parameter Gr/Re2. The velocity and temperature inside the boundary layer are observed to be influenced by the parameters like Prandtl number Pr, Gebhart number Gb. Significant changes are observed in non-dimensional skin friction and heat transfer coefficients due to viscous dissipation in the medium. The flow and temperature distributions inside the boundary layer are analyzed and the results for non-dimensional skin friction and heat transfer coefficients are discussed through computer generated plots.  相似文献   

5.
Fluid flow and heat transfer of mixed convection from a constant wall temperature circular cylinder in zero-mean velocity oscillating cooling flows have been simulated based on the projection method with two dimensional exponential stretched staggered cylindrical meshes. Cycle mean temperature and secondary streaming are obtained by the method of partial sums of the Fourier series. Present numerical results are validated by comparing the heat transfer results of free convection and the secondary streaming of pure oscillating flow over a circular cylinder to published experimental and numerical results. The complete structures of the cycle mean temperature and secondary streaming patterns are provided by numerical simulations over wide ranges of the Reynolds number, the Keulegan–Carpenter number and the Richardson number. Based on turning points of the curves of the overall Nusselt numbers versus Reynolds numbers and the characteristics of the cycle averaged temperature and flow patterns, the heat transfer can be divided into three linear regimes (conduction, laminar convection, and turbulent convection dominated regimes) and two non-linear transition regimes. The effects of wave directions, amplitudes, frequencies, and buoyancy forces on the enhancement of heat transfer are also investigated. The effective ranges of the governing parameters for heat transfer enhancement are identified.  相似文献   

6.
A numerical study of fluid flow and heat transfer in a two-dimensional channel under fully developed turbulent conditions is reported. A computer program which is capable of treating both forced and natural convection problems under turbulent conditions has been developed. The code uses the high-Reynolds-number form of the two equation turbulent model(k-?) in which a turbulent kinetic energy near-wall model is incorporated in order to accurately represent the behavior of the flow near the wall, particularly in the viscous sublayer where the turbulent Reynolds number is small. A near-wall temperature model has been developed and incorporated into the energy equation to allow accurate prediction of the temperature distribution near the wall and, therefore, accurate calculation of heat transfer coefficients. The sensitivity of the prediction of flow and heat transfer to variations in the coefficients used in the turbulence model is investigated. The predictions of the model are compared to available experimental and theoretical results; good agreement is obtained. The inclusion of the near-wall temperature model has further improved the predictions of the temperature profile and heat transfer coefficient. The results indicate that the turbulent kinetic energy Prandtl number should be a function of Reynolds number.  相似文献   

7.
 The steady mixed convection flow over a vertical wedge with a magnetic field embedded in a porous medium has been investigated. The effects of the permeability of the medium, surface mass transfer and viscous dissipation on the flow and temperature fields have been included in the analysis. The coupled nonlinear partial differential equations governing the flow field have been solved numerically using the Keller box method. The skin friction and heat transfer are found to increase with the parameters characterizing the permeability of the medium, buoyancy force, magnetic field and pressure gradient. However the effect of the permeability and magnetic field on the heat transfer is very small. The heat transfer increases with the Prandtl number, but the skin friction decreases. The buoyancy force which assists the forced convection flow causes an overshoot in the velocity profiles. Both the skin friction and heat transfer increase with suction and the effect of injection is just the reverse. Received on 21 May 1999  相似文献   

8.
This study addresses the phenomenon of persistent countergradient (PCG) fluxes of momentum and heat (density) as observed in homogeneous turbulence forced by shear and stratification. Countergradient fluxes may occur at large scales when stratification is strong. However, they always occur at small scales, independently of stratification. A conceptional model is introduced to explain PCG fluxes at small scales as the result of the collision of large-scale fluid parcels. The large parcels collide under the driving force of inclined vortex structures (in a shear-dominated flow) or of buoyancy (in a strongly stratified shear flow). This collision model also explains the PCG heat flux in an unsheared stratified flow with zero average momentum flux. It is found that the energy of the small-scale PCG motions is provided (i) by quick transport of kinetic energy from the scales of production to relatively slowly dissipating scales if the flow is shear-driven and (ii) by conversion of available potential energy to kinetic energy at small scales when the flow is stratified. The collision mechanism is an inherent property of the turbulence dynamics. Therefore, the PCG fluxes at small scales reflect a universal character of homogeneous turbulence, and are found over a large range of Reynolds numbers. The Prandtl (or Schmidt) number influences the rate of dissipation of temperature (or density) variance but not the dissipation rate of the velocity variance. In stratified flows, therefore, the number directly affects the strength of the PCG heat flux at small scales. It is found, however, that the PCG momentum flux is also altered slightly when the Prandtl number is large enough to sustain small buoyantly moving parcels after collision.  相似文献   

9.
Unsteady flow and heat transfer from a horizontal isothermal square cylinder is studied numerically using a three-dimensional computational model to investigate the influence of buoyancy on the forced flow and heat transfer characteristics. The numerical model is based on a horizontal square cylinder subjected to laminar fluid flow in an unconfined channel. The governing equations in 3D form are solved using a fractional step method based on the finite difference discretization in addition to a Crank–Nicholson scheme employed to the convective and the viscous terms. Two working fluids–air (Pr = 0.7) and water (Pr = 7)–are considered, and the flow and heat transfer simulations were carried out for the Reynolds and Richardson numbers in the intervals 55 ≤ Re ≤ 250 and 0 ≤ Ri ≤ 2, respectively. The flow characteristics such as time-averaged drag/lift, rms drag/rms lift coefficients as well as Strouhal number were computed. The heat transfer from the cylinder is assessed by mean Nusselt number (and rms Nusselt number) over the total heated cylinder walls. As the buoyancy increases, the mass and the velocity of the fluid flowing underneath the cylinder increases. The fluid is injected into the near wake region with an upward motion which significantly alters the flow field in the downstream as well as upstream regions. The effects of Reynolds, Richardson and Prandtl numbers on the flow field and temperature distributions are discussed in detail. It is shown that the flow and heat transfer characteristics are influenced more for air than water. To fill the void in the literature, useful empirical correlations of practical importance are derived for pure forced and pure natural as well as mixed convection. The mixed convection correlations, in terms of the ratio of pure forced convection, are also developed, and their implications are discussed.  相似文献   

10.
This paper presents results on the combined effect of thermo‐solutal buoyancy forces on the recirculatory flow behavior in a horizontal channel with backward‐facing step and the ensuing impact on heat and mass transfer phenomena. The governing equations for double diffusive mixed convection are represented in velocity–vorticity form of momentum equations, velocity Poisson equations, energy and concentration equations. Galerkin's finite‐element method has been employed to solve the governing equations. Recirculatory flow fields with heat and mass transfer are simulated for opposing and aiding thermo‐solutal buoyancy forces by assuming suitable boundary conditions for energy and concentration equations. The effect of Richardson number (0.1?Ri?10) and buoyancy ratio (?10?N?10) on the recirculation bubble and Nusselt and Sherwood numbers are studied in detail. For Richardson number greater than unity, distinct variations in the gradients of Nusselt number and Sherwood number with buoyancy ratio are observed for flow regimes with opposing and aiding buoyancy forces. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The influences of buoyancy on turbulent heat transfer to a liquid metal flowing in a vertical pipe are considered. A theoretical model is presented which provides a criterion for the conditions under which such influences become significant and which predicts the impairment of heat transfer for upward flow and enhancement for downward flow. The variation with Peclet number of the maximum impairment of heat transfer and conditions under which it occurs are established. A generalization of the model leading to an equation for the entire mixed convection region is proposed. From this an equation for turbulent free convection to liquid metals is obtained.  相似文献   

12.
The direct numerical simulation(DNS) of heat transfer in a fully developed non-isothermal particle-laden turbulent channel flow is performed.The focus of this paper is on the modulation of the particles on turbulent thermal statistics in the particle-laden flow with three Prandtl numbers(P r = 0.71,1.5,and 3.0) and a shear Reynolds number(Reτ = 180).Some typical thermal statistics,including normalized mean temperature and their fluctuations,turbulent heat fluxes,Nusselt number and so on,are analyzed.The results show that the particles have less effects on turbulent thermal fields with the increase of Prandtl number.Two reasons can explain this.First,the correlation between fluid thermal field and velocity field decreases as the Prandtl number increases,and the modulation of turbulent velocity field induced by the particles has less influence on the turbulent thermal field.Second,the heat exchange between turbulence and particles decreases for the particle-laden flow with the larger Prandtl number,and the thermal feedback of the particles to turbulence becomes weak.  相似文献   

13.
Turbulence in thermal convection is investigated for flows in which the production of turbulence energy is due solely to buoyancy, and the statistics of the flow are homogeneous in horizontal planes. New experimental results for high Rayleigh number unsteady turbulent convection in a horizontal layer heated from below and insulated from above are presented and compared to turbulent Rayleigh convection, convection in the planetary boundary layer, and laboratory penetrative convection. Mean temperature fields are correlated in terms of wall layer scales and convection scales. Joint statistics of turbulent temperature and horizontal velocity and vertical velocity through fourth order are presented for the core region of the convection layer.This paper was presented at the Ninth Symposium on Turbulence, University of Missouri-Rolla, October 1–3, 1984  相似文献   

14.
Unsteady laminar mixed convection flow (combined free and forced convection flow) along a vertical slender cylinder embedded in a porous medium under the combined buoyancy effect of thermal and species diffusion has been studied. The effect of the permeability of the medium as well as the magnetic field has been included in the analysis. The partial differential equations with three independent variables governing the flow have been solved numerically using a implicit finite difference scheme in combination with the quasilinearization technique. Computations have been carried out for accelerating, decelerating and oscillatory free stream velocity distributions. The effects of the permeability of the medium, buoyancy forces, transverse curvature and magnetic field on skin friction, heat transfer and mass transfer have been studied. It is found that the effect of free stream velocity distribution is more pronounced on the skin friction than on the heat and mass transfer. The permeability and magnetic parameters increase the skin friction, but reduce the heat and mass transfer. The skin friction, heat transfer and mass transfer are enhanced due to the buoyancy forces and curvature parameter. The heat transfer is strongly dependent on the viscous dissipation parameter and the Prandtl number, and the mass transfer on the Schmidt number.  相似文献   

15.
A two-dimensional numerical study is carried out to understand the influence of cross buoyancy on the vortex shedding processes behind two equal isothermal square cylinders placed in a tandem arrangement at low Reynolds numbers. The spacing between the cylinders is fixed with five widths of the cylinder dimension. The flow is considered in an unbounded medium, however, fictitious confining boundaries are chosen to make the problem computationally feasible. Numerical calculations are performed by using a finite volume method based on the PISO algorithm in a collocated grid system. The range of Reynolds number is chosen to be 50–150. The flow is unsteady laminar and two-dimensional in this Reynolds number range. The mixed convection effect is studied for Richardson number range of 0–2 and the Prandtl number is chosen constant as 0.71. The effect of superimposed thermal buoyancy on flow and isotherm patterns are presented and discussed. The global flow and heat transfer quantities such as overall drag and lift coefficients, local and surface average Nusselt numbers and Strouhal number are calculated and discussed for various Reynolds and Richardson numbers.  相似文献   

16.
In this paper, the lattice Boltzmann method is used to study the Prandtl number effect on flow structure and heat transfer rates in a magnetohydrodynamic flow mixed convection in a lid‐driven cavity filled with a porous medium. The right and left walls are at constant but different temperatures (θh and θc), while the other walls are adiabatic. Gallium and salt water (0.02 < Pr < 13.4) are used as samples of the electroconducting fluids in the cavity. Typical sets of streamlines and isotherms are presented to analyze the flow patterns set up by the competition among the forced flow created by the lid‐driven wall, the buoyancy force of the fluid and the magnetic force of the applied magnetic field. Mathematical formulations in the porous media were constructed based on the Brinkman–Forchheimer model, while the multidistribution‐function model was used for the magnetic field effect. Numerical results were obtained and the effects of the Prandtl number and the other effective parameters such as Richardson, Hartman, and Darcy numbers were investigated. It was found that the fluid fluctuations within the cavity were reduced by increasing the Hartman number. A similar pattern was observed for the Darcy number reduction. Heat transfer was essentially dominated by the conduction for the low Prandtl number and forced convection dominated as the Prandtl number increased. Also, the average Nusselt number was raised by increasing the Prandtl number. It was discovered that a remarkable heat transfer enhancement of up to 28% could be reached by increasing the Prandtl number (from 0.02 to 13.4) at constant Richardson and Darcy numbers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Two dimensional unsteady Navier-Stokes and the energy equations are solved using finite element method for the case of flow past five row deep in-line bundle of circular cylinders with pitch to diameter ratios (PDR) of 1.5 and 2.0. Numerical solutions of governing equations have been obtained using Euler's explicit algorithm. Analysis have been made for Reynolds number of 100 and Prandtl number of 0.71. The effect of Richardson number (Ri=Gr/Re 2) on the flow and heat transfer have been investigated forRi=?1.0, ?0.5, 0.0, +0.5 and +1.0. Streamlines, isovorticity lines, pressure and temperature contours, local and average Nusselt numbers, pressure and shear stress distribution around the cylinders are presented. Results obtained for forced convection (Ri=0.0) agree well with the available experimental and numerical results. There is considerable effect of buoyancy over tube bundles both in buoyancy aiding and opposing flows.  相似文献   

18.
The mixed convection heat transfer of upward molten salt flow in a vertical annular duct is experimentally and numerically studied. The heat transfer performances of mixed convection are measured under Reynolds number 2,500–12,000 and inlet temperature 300–400 °C, and Nusselt number of molten salt flow with cooled inner wall monotonically increases with buoyancy number. The mixed convection is further simulated by low-Reynolds number k-ε model and variable properties, and the heat transfer tendency from numerical results agrees with that from experiments. At low Reynolds number, the natural convection plays more important role in the mixed convection. As the buoyancy number rises, the thickness of flow boundary layer near the inner wall increases, while the effective thermal conductivity remarkably rises, so the enhanced heat transfer of mixed convection is mainly affected by the effective thermal conductivity due to turbulent diffusion.  相似文献   

19.
侧加热腔内的自然对流   总被引:1,自引:0,他引:1  
徐丰  崔会敏 《力学进展》2014,44(1):201403
开展侧加热腔内自然对流的研究具有重大的环境及工业应用背景. 总结侧加热腔内水平温差驱动的自然对流的最新研究进展, 并概述相应的流动性质、动力机制和传热特性以及对不同无量纲控制参数的依赖也有重要的科学价值. 已取得的研究结果显示突然侧加热的腔内自然对流的发展可包括初始阶段、过渡阶段和定常或准定常阶段. 不同发展阶段的流动依赖于瑞利数、普朗特数及腔体的高宽比, 且定常或准定常阶段的流态可以是定常层流流动、非定常周期性流动或者湍流流动. 此外, 回顾了对流流动失稳机制的研究成果以及湍流自然对流方面的新进展. 最后, 展望了侧加热腔内的自然对流研究的前景.   相似文献   

20.
Budgets of turbulent heat fluxes and temperature variance obtained from the Direct Numerical Simulation of an incompressible periodic channel flow with a Reynolds number of 150 (based on friction velocity) and a Prandtl number of 0.71 are presented and analysed for four cases: locally imposed temperature at the wall (constant Dirichlet), locally imposed heat flux (constant Neumann), heat exchange coefficient (Robin) and 3D conjugate heat transfer. The dissipation rate associated with the temperature variance is strongly impacted by the thermal boundary condition. For non-conjugate cases, a straightforward analytical analysis establishes the connection between the boundary condition, the temperature variance and the wall-normal part of the thermal dissipation rate at the wall. For the conjugate case, the two-point correlations of the thermal field in the solid domain confirms the existence of very large scale thermal structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号