首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, aqueous lead magnesium niobate (PMN) slurry formulations were developed for tape casting using a poly(acrylic acid) - poly(ethylene) oxide comb polymer as the dispersant, nonionic acrylic latex as the binder phase and hydroxypropyl methylcellulose as the wetting agent. Concentrated suspensions were cast onto a silicone-coated mylar film, and the effect of acrylic latex on deposition was investigated. Thermal analyses were performed to investigate the mass loss of the green tapes as a function of calcination temperature. Differential scanning calorimetric analyses were made under air and nitrogen atmospheres to investigate the binder distribution through the green tapes. Results showed that it is possible to prepare flexible, crack free PMN thick films using a proper slurry composition in the presence of acrylic latex binder, without using any plasticizer. Additionally, decomposing mechanisms of the acrylic based binder were essentially different in the two atmospheres.  相似文献   

2.
Stabilization of gamma-alumina suspension for chemical-mechanical polishing (CMP) of copper was investigated. Citric acid and poly(acrylic acid) (PAA) (M(w)=5000) were used as dispersant. The stability of suspension was evaluated from the changes in viscosity, particle size and zeta potential. It appears that metastable gamma-alumina mainly due to its high specific surface area and to the presence of aluminol groups on its surface is progressively transformed to bayerite (beta-Al(OH)(3)) by hydration procedure. Citric acid molecules were adsorbed onto gamma-alumina surface effectively and exhibited the excellent hydration inhibition effect. Although citrate-alumina surface complexes give barrier to the flocculation, the repulsion potential is based mainly on the electrostatic repulsion, thereby steric hindrance caused by the adsorption of these small molecules is very weak. The electrosteric repulsion, which provides more effective dispersion stability than electrostatic repulsion force, can be expected by using polyelectrolyte such as PAA; however, adsorbed layers of PAA onto solid/liquid interface are loosely formed. Therefore, a large amount of PAA was required to inhibit the surface hydration of gamma-alumina suspension, thereby the excess addition of PAA decreased the electrosteric repulsion and re-bridging of the dispersant between particles caused an increase in suspension viscosity. Therefore, synergistic effect can be expected in mixed dispersant system of citric acid and PAA, since small citric acid molecules are adsorbed faster than PAA, inhibiting the progress of surface hydration, and then adsorbed PAA layers exhibit the effective electrosteric repulsion interaction between particles with a small amount compared with PAA alone. It was revealed that the gamma-alumina slurry dispersed by mixed dispersant exhibited the improved removal rate of Cu layer by CMP polishing test.  相似文献   

3.
A support bandage for electrodes: A cross-linked polymeric binder inhibits mechanical fracture of silicon negative electrodes during cycling. Nanosized silicon powder with a 3D interconnected network of poly(acrylic acid) and sodium carboxymethylcellulose as binder exhibits high reversible capacity of over 2000?mAh?g(-1) after 100 cycles at 30?°C while maintaining a high capacity and high current density.  相似文献   

4.
An investigation of the electrochemical behaviour of gold electrodes coated with poly(ethylene glycol) (PEG), poly(acrylic acid) (PAA) and nanopatterned PAA/PEG layers is presented. Plasma-enhanced chemical vapour deposition and colloidal lithography were used to produce nanodomes of PAA in a matrix of PEG. The electrochemical response at these nanostructured electrodes was studied as a function of the probe ion charge. Results show that the film structures allow the electrodes to retain their electrochemical activity while minimising surface fouling and will thus be useful in the development of electrochemical nanobiosensors for various applications.  相似文献   

5.
正极黏合剂是维持锂离子电池正极结构稳定性的关键材料,对于锂离子电池的能量密度及安全性具有重要作用.本文综述了锂离子电池正极黏合剂材料的研究及应用进展,重点介绍了锂离子电池正极黏合剂对于正极材料及锂离子电池电化学性能的影响,详细总结了以聚偏氟乙烯(PVDF)、聚酰亚胺(PI)、功能性聚合物黏合剂为代表的油溶性黏合剂和以聚丙烯酸(PAA)、羧甲基纤维素(CMC)为代表的水溶性黏合剂的特点:PVDF具备良好的化学稳定性,黏合效果较好,但耐高温性能差且在电解液中易溶胀;PI的耐高温性能优异,机械性能较好,但成本相对较高;功能性聚合物黏合剂具备良好的导电性,可有效抑制Li-S锂电池中多硫化物的穿梭效应,但制备工艺复杂;PAA的柔性较好,抗高压能力较强,但是力学性能较差;CMC具有良好的分散性,机械强度较大,因脆性较大需与丁苯橡胶(SBR)配合使用.结合已有的研究报道,探讨了高性能锂离子电池先进正极黏合剂材料的未来发展方向及前景.  相似文献   

6.
It is demonstrated that the design of the composite electrode, or more precisely the morphology and distribution of the binder poly(vinylidine fluoride) (PVdF) within the composite electrode, has a significant impact on the cycling performance of Li storage alloy (Sn/SnSb) electrodes. Different binder morphologies and distributions have been obtained by using different solvents for the slurry preparation, such as 1-methyl-2-pyrrolidinone (NMP), in which PVdF is dissolved, yielding electrodes with a homogeneously and finely distributed binder, or decane, in which PVdF is only dispersed, yielding electrodes in which the original particle morphology of the binder powder is preserved. In constant current cycling tests carried out in an excess of electrolyte, the electrodes with the ‘dispersed’ binder show far better cycling capacities and stabilities than those with the ‘dissolved’ binder. This is explained by the different binding strengths, swelling behaviour in the electrolyte, electrode porosities, and possible ‘buffer’ effects of the compact and the finely distributed binders.  相似文献   

7.
分散剂分子结构特征对煤浆流变特性的影响   总被引:14,自引:4,他引:14  
系统考察了具有不同分子结构特片系列分散剂对高浓度煤浆性质的影响。发现煤的成浆性、浆体的流变特性和稳定化作用与分散剂的分子结构特征密切相关。就本研究所涉及的分散剂种类和煤种而言,分散剂单体结构中多核芳烃结构所占比例较小时易于使浆体呈屈服假塑性,相反,则使浆体呈屈服胀塑性。分散剂单体的侧链结构对煤成浆性和浆体流变性的影响不很突出,而分散剂的第二单体结构的影响却非常显著。结果还同时表明,分散剂的高分散性能是导致浆体呈屈服胀塑性流体和弱化浆体稳定化作用的重要因素。  相似文献   

8.
In the present work, pH-sensitive poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) blends as well as hydrogels based on poly(N-isopropylacrylamide) (PNIPAAm), which are sensitive to organic solvent concentration in aqueous solutions, were used in silicon micromachined sensors. A sensitivity of approximately 15 mV/pH was obtained for a pH sensor with a 50 μm thick PVA/PAA hydrogel layer in a pH range above the acid exponent of acrylic acid (pKa=4.7). The output voltage versus pH-value characteristics and the long-term signal stability of hydrogel-based sensors were investigated and the measurement conditions necessary for high signal reproducibility were determined. The influence of the preparation conditions of the hydrogel films on the sensitivity and response time of the chemical and pH sensors is discussed.  相似文献   

9.
Self‐association in aqueous solution of amphiphilic poly(acrylic acid)‐b‐poly(propylene oxide)‐b‐poly(acrylic acid) (PAA‐b‐PPO‐b‐PAA) copolymers having various outer PAA block lengths are presented. These copolymers show two thermosensitive behaviors. The first one, due to hydrogen bonds between PAA and PPO resulting in large aggregates, was observed by visible spectroscopy. The second one, due to the association of PPO middle block into aggregates, was evidenced by dynamic light scattering and pyrene fluorescence. These critical temperatures both depend on the ionization and the length of PAA blocks. The characterization of the aggregates above the critical aggregation concentration by fluorescence quenching experiments showed a very low aggregation number corresponding to dimers or trimers association depending on the conditions. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1507–1514  相似文献   

10.
Laterally varying thickness gradients of poly(acrylic acid) (PAA) were formed by Zn(II)-catalyzed electropolymerization of acrylic acid (AA) in the presence of an in-plane electrochemical potential gradient applied to Au working electrodes. In the static potential gradient (SPG) approach, two ends of a Au working electrode were clamped at distinct potentials for the duration of the electropolymerization process, thereby generating a time-independent in-plane electrochemical potential gradient, V(x). A dynamic potential gradient (DPG) approach was also used, in which the two end potentials were varied in time, while maintaining a constant voltage offset, to generate an in-plane electrochemical potential gradient, V(x,t). Because the kinetics of heterogeneous electron transfer vary with the local overpotential, these two methods produce PAA films with laterally varying thickness gradients, although they exhibit different spatial characteristics. X-ray photoelectron spectroscopy (XPS) and surface plasmon resonance (SPR) imaging were used to characterize the PAA gradients. The in-plane thickness variations of PAA gradients formed by both SPG and DPG approaches agree with predictions of the Butler-Volmer equation at small absolute overpotentials, while at large (negative) overpotentials, mass transport dominates, and the thickness reaches a plateau value independent of local potential. DPG-produced PAA gradients are generally broader than SPG gradients with the same initial potential and comparable effective growth time, indicating that the DPG approach is more suitable for formation of thicker gradients.  相似文献   

11.
Low molar mass poly(acrylic acid) (PAA) is generally obtained by free radical polymerization of acrylic acid (AA) in aqueous solution, using thermal initiators and some chain transfer agent. However, under such conditions it is rather difficult to efficiently produce molar masses as low as those required for obtaining an effective dispersant. In this work, the semibatch polymerization of AA at 45 °C is considered, using potassium persulfate (KPS) and sodium metabisulfite (KPS/NaMBS), or alternatively KPS and sodium hypophosphite (KPS/NaHP) as redox initiators to produce PAA of controlled low molar masses. These initiation systems allow the production of PAA with Mn as low as 2.0 kDa, relatively narrow molar mass distribution (1.5 < Mw/Mn < 3.0), and low branching degree. Most of the investigated polymerizations reach almost complete conversions (>95%); and it is verified that both reductants, NaMBS and NaHP, also behave as chain transfer agents. Finally, the investigated process with redox couples allowed the production of PAA with acceptable dispersant and antiscaling properties.  相似文献   

12.
Hydrogen-bonding-directed layer-by-layer assembled films, based on polystyrene-block-poly(acrylic acid) (PS-b-PAA) block copolymer micelles and poly(4-vinylpyridine) (P4VP), were successfully fabricated in methanol. Varying the PAA content in the PS-b-PAA micelles afforded control over the film growth properties, especially the multilayer film thickness. Interestingly, antireflection films with refractive indices that could be tuned between 1.58 and 1.28 were obtained by treatment with an aqueous HCl solution (pH 2.27), and the transmittance obtained was as high as 98.4%. In acid solution, the pyridine group was protonated, destroying the hydrogen bonding between P4VP and PAA. A concomitant pH-induced polymer reorganization in the multilayers resulted in a porous honeycomb-like texture on the substrate.  相似文献   

13.
Weak polyelectrolytes poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) were assembled into {PAH/PAA}n layer‐by‐layer films on electrodes. The cyclic voltammetry (CV) response of ferrocenecarboxylic acid (Fc(COOH)) at {PAH/PAA}5 film electrodes assembled under the specific condition showed pH‐sensitive “on‐off” switching property. This property was further used to control the electrocatalytic oxidation of glucose by glucose oxidase (GOD) with Fc(COOH) as the electron transfer mediator, so that the pH‐switchable bioelectrocatalysis could be realized. The mechanism of pH‐sensitive behavior of the system was explored and believed to originate from the pH‐dependent structure change of the films.  相似文献   

14.
Photo-cross-linkable polyelectrolyte multilayers were made from poly(allylamine) (PAH) and poly(acrylic acid) (PAA) modified with a photosensitive benzophenone. Nanoindentation, using atomic force microscopy (AFM) of these and unmodified PAH/PAA multilayers, was used to assess their mechanical properties in situ under an aqueous buffer. Under the conditions employed (and a 20 nm radius AFM tip), reliable nanoindentations that appeared to be decoupled from the properties of the silicon substrate were obtained for films greater than 150 nm in thickness. A strong difference in the apparent modulus was observed for films terminated with positive as compared to negative polyelectrolytes. Films terminated with PAA were more glassy, suggesting better charge matching of polyelectrolytes. Multilayers irradiated for up to 100 min showed a smooth, controlled increase in the modulus with little change in the water contact angle. The permeability to iodide ion, measured electrochemically, also decreased in a controlled fashion.  相似文献   

15.
High molecular weight (MW) polyvinyl alcohol (PVA) was synthesized by two-step polymerizations and employed as an anodic binder of lithium ion batteries (LIBs). Numerous hydroxyl groups in PVA formed strong hydrogen bonds with both active materials and the current collector. These strong hydrogen bonds led to an increase in the amount of binder covering the surface of active materials and significantly enhanced the adhesion strength of electrodes. The high MW PVA binder showed much better cyclic performance for silicon/carbon anodes than polyvinylidene fluoride (PVDF) and polyacrylic acid (PAA) binders.  相似文献   

16.
Polyimide (PI)-based composite films incorporated with carbon black (CB), carbon nanotube (CNT) and carbon nanofiber (CNF), respectively, were prepared using low-molecular-weight poly(amic acid) (PAA), a precursor of PI, as an impurity-free dispersant. High-energy ball mill was employed not only to downsize the nano-carbon agglomerates, but also to cut off the PAA chains for in-situ stabilizing the dispersion. Effect of the ball milling time, procedure, and filler species on the filler dispersion was investigated by means of electrical resistivity reproducibility, morphology observation, and mechanical testing. Comparing with direct dispersion of the nano-carbon in PAA, the composite films fabricated by a two-step approach, that is dispersion from the in-situ degradated low-molecular-weight PAA stabilized nano-carbon slurry, presented a uniform electrical conductivity with a lower percolation concentration and excellent reproducibility in the percolation region. A significant improvement in the Young’s modulus for the CNT loaded PI film was achieved, which was much more effective than those filled with CB or CNF.  相似文献   

17.
We performed neutron reflectometry (NR) and total internal reflection fluorescence (TIRF) spectroscopy to characterize the structure and the protein binding capacity of a planar poly(acrylic acid) (PAA) brush at different temperatures. A PAA brush was prepared by spin-coating planar quartz or silicon wafers with a thin film of poly(styrene). Then, the diblock copolymer poly(styrene)-poly(acrylic acid) was deposited on these modified wafers using the Langmuir-Sch?fer or Langmuir-Blodgett technique. PAA grafting densities of about 0.1 chains per nm2 were obtained. The NR experiments indicate a remarkable swelling of the PAA brush in contact with a buffer solution, when it is heated to 40 degrees C for several hours. The swollen brush structure remains upon cooling back to 20 degrees C suggesting a disentanglement of the initially formed PAA brush by the temporary heating. At pD = 6.7, the protein bovine serum albumin (BSA) with a negative net charge is strongly adsorbed to the swollen PAA brush. From the scattering length density profiles obtained from the NR curves, an almost homogeneous filling of the whole PAA brush space with BSA molecules can be deduced corresponding to an average BSA volume fraction of about 7-10% and an adsorbed protein mass of about 1.4 mg m-2. By analyzing the TIRF experiments, it is found that BSA adsorption is enhanced when increasing the temperature which represents an evidence for an entropic driving force for protein adsorption. However, the mechanism of BSA adsorption at a PAA brush appears to be different at 20 and 40 degrees C.  相似文献   

18.
Acrylic acid was first electropolymerized on the surface of a gold electrode. Then, polyaniline (PANI) was electrodeposited on the poly(acrylic acid) (PAA) network to give a PANI–PAA composite film. Scanning electron microscopy and electrochemical studies confirmed the formation of PANI–PAA composite which exhibited excellent electroactivity over a wide pH range. The electro-oxidation of ascorbic acid (AA) was studied in detail. The modified electrode exhibits significantly reduced oxidation overpotential. The response towards AA is linear in the range 1.0 μM to 9.3 mM (R?=?0.9997, n?=?33) at a potential of 0.1 V (vs. SCE). The sensitivity is 207 μA mM-1 cm-2, and the detection limit is 1.0 μM (S/N?=?3). Interferences by uric acid and dopamine are negligible. The electrode thus enables sensitive and selective determination of AA, with a performance superior to many other PANI–based ascorbate sensors.  相似文献   

19.
This article describes the buildup of hydrogen bonded multilayer film of poly(2-vinylpyridine) (P2VP) and poly(acrylic acid) (PAA), and the influence of polymer molecular weight on the formation of microporous film by post-base treatment. The formation of a microporous film involved a two-step mechanism: the release of PAA from P2VP/PAA multilayer, and the reorganization of the remaining P2VP on the substrate. Fourier transform infrared spectroscopy (FT-IR) indicated that the release of PAA from hydrogen bonded multilayer was a rapid process, which was almost independent of the molecular weight of PAA. Furthermore, the molecular weight of P2VP had a great effect on micropore formation by immersing the P2VP/PAA multilayer in basic solution. The rate of micropore formation increased with increasing molecular weight. We anticipate that a comparative study on P2VP/PAA films containing high or low molecular weight polymer provides a way to control the surface morphology, and will be helpful and constructive for the forthcoming discussion about the formation of the microporous film.  相似文献   

20.
pH‐dependent growth laws of the mass coverage Γ(n) of poly(diallyldimethylammonium) chloride and poly(acrylic acid) (PAA) layer‐by‐layer films are analyzed by Quartz Crystal Microbalance‐D. (Attenuated Total Reflection)‐FTIR spectroscopy shows a degree of dissociation of acrylic acid groups in the films identical to that in solution. Apart from pH‐regimes of differently pronounced exponential and linear growth, the corresponding kinetics indicate pH‐dependent adsorption, reorganization, and diffusion processes. As the thickest films form with almost uncharged PAA (low pH), the results can only partly be explained by the dissociation degree of PAA in the film. For intermediate and high pH values chain interdiffusion as a mechanism for nonlinear growth is strongly dependent on the charge density of the PAA chains. However, at low pH other types of interactions, most likely ion–dipole interactions, play a major role in the multilayer growth. Furthermore, a change in the symmetry of growth can be observed in the low to intermediate pH range. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 425–434  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号