首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过麦克加成反应在磷酸盐缓冲溶液中制备出一种基于三臂聚乙二醇丙烯酸酯的能快速固化的可注射水凝胶.采用倒置法测定了体系的凝胶化时间.通过红外,DMA,溶胀,降解等一系列测试,研究了该水凝胶的结构和物理化学性能.观察到通过控制前体溶液的浓度,可以控制凝胶的成胶时间和所形成凝胶的溶涨率.同时表明该水凝胶具备可注射性和可降解性.细胞毒性评价显示,该水凝胶浸提液无毒性,符合生物材料的安全评价标准.由于麦克加成反应可在人体生理条件(pH7.4,37℃)下快速进行,并且不需要任何引发剂、催化剂和有机溶剂,因此该反应非常适合应用于生物医用材料领域.  相似文献   

2.
Hydrogels possess several physical and chemical properties suitable for engineering cellular environments for biomedical applications. Despite recent advances in hydrogel systems for cell culture, it is still a significant challenge to independently control the mechanical and diffusional properties of hydrogels, both of which are well known to influence various cell behaviors when using hydrogels as 3D cell culture systems. Controlling the crosslinking density of a hydrogel system to tune the mechanical properties inevitably affects their diffusional properties, as the crosslinking density and diffusion are often inversely correlated. In this study, a polymeric crosslinker is demonstrated that allows for the adjustment of the degree of substitution of reactive functional groups. By using this polymeric crosslinker, the rigidity of the resulting hydrogel is controlled in a wide range without changing the polymer concentration. Furthermore, their diffusional properties, as characterized by their swelling ratios, pore diameters, and drug release rates, are not significantly affected by the changes in the degree of substitution. 3D cell studies using this hydrogel system successfully demonstrate the varying effects of mechanical properties on different cell types, whereas those in a conventional hydrogel system are more significantly influenced by changes in diffusional properties.  相似文献   

3.
Various polymerization mechanisms have been developed to prepare peptide‐immobilized poly(ethylene glycol) (PEG) hydrogels, a class of biomaterials suitable for studying cell biology in vitro. Here, a visible light mediated thiol‐acrylate photopolymerization scheme is reported to synthesize dually degradable PEG‐peptide hydrogels with controllable crosslinking and degradability. The influence of immobilized monothiol pendant peptide is systematically evaluated on the crosslinking of these hydrogels. Further, methods are proposed to modulate hydrogel crosslinking, including adjusting concentration of comonomer or altering the design of multifunctional peptide crosslinker. Due to the formation of thioether ester bonds, these hydrogels are hydrolytically degradable. If the dithiol peptide linkers used are susceptible to protease cleavage, these thiol‐acrylate hydrogels can be designed to undergo partial proteolysis. The differences between linear and multiarm PEG‐acrylate (i.e., PEGDA vs PEG4A) are also evaluated. Finally, the use of the mixed‐mode thiol‐acrylate PEG4A‐peptide hydrogels is explored for in situ encapsulation of hepatocellular carcinoma cells (Huh7). The effects of matrix stiffness and integrin binding motif (e.g., RGDS) on Huh7 cell growth and HIPPO pathway activation are studied using PEG4A‐peptide hydrogels. This visible light poly­merized thiol‐acrylate hydrogel system represents an alternative to existing light‐cured hydrogel platforms and shall be useful in many biomedical applications.  相似文献   

4.
生物材料是推动生物医学领域日新月异变化的基石,医用水凝胶作为重要成员,近年来表现出蓬勃发展的态势。文章介绍了一种新型可注射的、以生物相容性方法交联的聚谷氨酸(Poly (γ-glutamic acid), PGA)/透明质酸(Hyaluronic acid, HA)复合水凝胶。研究首先采用EDC/NHS方法合成了酪胺(Tyramine,Ty)接枝聚谷氨酸的PGA-Ty前体大分子及半胱胺(Cysteamine, CA)修饰透明质酸的HA-CA前体大分子。两种前体大分子的结构分别使用核磁和红外进行了确证。得到的两种前体大分子在低浓度双氧水和辣根过氧化物酶(Horseradish Peroxidase, HRP)的共同作用下,于水相中交联得到互穿网络(Interpenetrating Network, IPN)水凝胶。实验对IPN水凝胶样品的系列性能,如平衡含水量、内部形貌、酶降解速率以及力学性能等进行了测试,并选取了盐酸四环素为药物模型对凝胶的体外药物释放行为、体外抗菌效果进行了测评。凝胶材料的细胞毒性及凝胶支架对细胞3D培养的效果证明其生物相容性优异,体外包埋的细胞经72h培养,未表现出明显细胞毒性。系列数据证明,该种水凝胶可以设计成为pH敏感型的药物控释载体材料,并因其良好的生物相容性,也有作为细胞支架、创伤辅料等其它生物医用材料的潜力。  相似文献   

5.
We introduce well-defined nanopillar arrays of a poly(ethylene glycol) (PEG) hydrogel as a cell culture platform to guide a 3D construct of primary rat cardiomyocytes in vitro for potential tissue engineering applications. Ultraviolet (UV)-assisted capillary lithography was used to fabricate highly uniform approximately 150 nm PEG pillars with approximately 400 nm height. It was found that cell adhesion was significantly enhanced on PEG nanopillars (132 +/- 29 cells/mm2) compared to that on the bare PEG control (39 +/- 17 cells/mm2) (p < 0.05) but substantially reduced compared to that on the glass control (502 +/- 45 cells/mm2) (p < 0.01). Furthermore, in colonizing cardiomyocytes, the nanopillars stimulated self-assembled aggregates among the contacting cells with 3D growth, which is a unique feature for nanopatterned PEG hydrogels as a cell culture substrate. The 3D-grown cardiomyocytes retained their conductive and contractile properties, as evidenced by the observation of beating cardiomyocytes with robust action potential generation.  相似文献   

6.
Construction of 3D tissues by various types of cells with specific characteristics is an important and fundamental technology in tissue reconstruction medicine and animal‐free diagnosis system. To do so, an excellent extracellular matrix (ECM) is needed for encapsulation of cells and maintaining cell activity. Spontaneously forming hydrogel matrix is used by complexation between two water‐soluble polymers, 2‐methacryloyloxyethyl phosphorylcholine polymer bearing phenylboronic acid groups and poly(vinyl alcohol). Two cytokines for cell proliferation are immobilized in the hydrogel matrix to control the activities of the encapsulated cells. The cytokine‐immobilized hydrogel matrix can encapsulate both L929 fibroblasts and normal human dermal fibroblasts under mild condition. The physical properties of the hydrogel matrix can follow the proliferation process of the encapsulated cells. The encapsulated cells secrete ECM in the polymer hydrogel networks upon 3D culturing for 7 days. Consequently, the tissue‐mimicking ECM hybrid hydrogels are fabricated successfully.  相似文献   

7.
We developed the photo‐crosslinkable hydrogel‐based 3D microfluidic device to culture neural stem cells (NSCs) and tumors. The photo‐crosslinkable gelatin methacrylate (GelMA) polymer was used as a physical barrier in the microfluidic device and collagen type I gel was employed to culture NSCs in a 3D manner. We demonstrated that the pore size was inversely proportional to concentrations of GelMA hydrogels, showing the pore sizes of 5 and 25 w/v% GelMA hydrogels were 34 and 4 μm, respectively. It also revealed that the morphology of pores in 5 w/v% GelMA hydrogels was elliptical shape, whereas we observed circular‐shaped pores in 25 w/v% GelMA hydrogels. To culture NSCs and tumors in the 3D microfluidic device, we investigated the molecular diffusion properties across GelMA hydrogels, indicating that 25 w/v% GelMA hydrogels inhibited the molecular diffusion for 6 days in the 3D microfluidic device. In contrast, the chemicals were diffused in 5 w/v% GelMA hydrogels. Finally, we cultured NSCs and tumors in the hydrogel‐based 3D microfluidic device, showing that 53–75% NSCs differentiated into neurons, while tumors were cultured in the collagen gels. Therefore, this photo‐crosslinkable hydrogel‐based 3D microfluidic culture device could be a potentially powerful tool for regenerative tissue engineering applications.  相似文献   

8.
Trypsin treatment employed in traditional cell desorption method cause the damage of extracellular matrix protein and cell membrane integrity. Two-dimensional thermo-sensitive cell culture dish has the limitation of insufficient area. This report describes an ingenious design and synthesis of a thermoresponsive chitosan-based hydrogel, N-succinyl chitosan (NSCS) grafted poly(N-isopropylacrylamide) (PNIPAM), named NSCS-g-PNIPAM. We then demonstrate the ultrafast gelation and liquefying of NSCS-g-PNIPAM by reversibly tuning the temperature of hydrogel solution above (gelation) or below (liquefying) 32°C. These unique features render the NSCS-g-PNIPAM hydrogel an ideal matrix for enzyme-free three-dimensional cell culture. As an exemplar, the skeleton muscle cell is chosen for in vitro cellular studies. The data suggests that after seven passages and harvesting, the amount of total protein, laminin and fibronectin of cell collected from the thermoreponsive hydrogel group shows unsignificant decrease after seven passages. The proteins on the cell surface are well protected compared to the conventional trypsin-treated method. In addition, by labeling the NSCS-g-PNIPAM hydrogels with tetraphenylethylene (TPE)-based aggregation-induced-emission (AIE) luminogenes, NSCS-g-PNIPAM were observed by confocal microscopy and they remain outside during entire cell culturing period.  相似文献   

9.
The purpose of this paper is studying the effect of incorporation of Multiwall Carbon Nanotubes (MWCNT) into two different nanocomposites in poly vinyl alcohol (PVA)/polyvinylpyrrolidone (PVP), and PVA/Polyethylene glycol (PEG). MWCNT were synthesized by chemical vapor deposition (CVD) method using acetylene and Fe/Co/Al2O3 as carbon precursor and catalyst, respectively. Nitric acid and sulfuric acid were used for purification and functionalization of MWCNT. Afterward, highly pure and functionalized MWCNT (0, 0.02, and 0.05% w/w) were incorporated in PVA/PVP and PVA/PEG to synthesize PVA/PVP/MWCNT and PVA/PEG/MWCNT nanocomposites hydrogel membranes that cross-linked by freezing–thawing. PEG and PVP were selected in these nanocomposites as dispersion matrix for MWCNT as well as for increasing the elasticity of the nanocomposites membranes. The morphology of the hydrogels was characterized by SEM, FTIR, XRD, TGA, and the mechanical properties of the hydrogel membranes were investigated. The swelling behavior in different pH-buffer solutions was studied as well as studying weight loss percentage and swelling kinetic. The drug releasing process of the hydrogel membranes was investigated using salicylic acid as a model drug. It was found that MWCNT are dispersed well into the polymers and crystallinity, mechanical properties and thermal stability of the hydrogels contain MWCNT are better than that without MWCNT. Maximum degree of swelling was observed at pH 7 and swelling degree increases with increasing the ratio of MWCNT in the hydrogels from 0.02 to 0.05%. All hydrogel membranes followed non-Fickian mechanism and drug releasing were controlled by varying the pH and amount of MWCNT.  相似文献   

10.
Due to the biocompatibility of poly(ethylene glycol) (PEG), PEG-based hydrogels have attracted considerable interest for use as biomaterials in tissue engineering applications. In this work, we show that PEG-based hydrogels prepared by photopolymerization of PEG macromonomers functionalized with either acrylate or acrylamide end-groups generate networks with crosslink junctions of high functionality. Although the crosslink functionality is not well controlled, the resultant networks are sufficiently well ordered to generate a distinct correlation peak in the small angle x-ray scattering (SAXS) related to the distance between crosslink junctions within the PEG network. The crosslink spacing is a useful probe of the PEG chain conformation within the hydrogel and ranges from approximately 6 to 16 nm, dependent upon both the volume fraction of polymer and the molecular weight of the PEG macromonomers. The presence of a peak in the scattering of photopolymerized PEG networks is also correlated with an enhanced compressive modulus in comparison to PEG networks reported in the literature with much lower crosslink functionality that exhibit no scattering peak. This comparison demonstrates that the method used to link together PEG macromonomers has a critical impact on both the nanoscale structure and the macroscopic properties of the resultant hydrogel network.  相似文献   

11.
Ring-opening polymerization of L(D)-lactide was realized in the presence of poly(ethylene glycol) (PEG), yielding PLLA/PEG and PDLA/PEG block copolymers. Bioresorbable hydrogels were prepared from aqueous solutions containing both copolymers due to interactions and stereocomplexation between PLLA and PDLA blocks. The rheological properties of the hydrogels were investigated under various conditions by changing copolymer concentration, temperature, time and frequency. The hydrogels constitute a dynamic and evolutive system because of continuous formation/destruction of crosslinks and degradation. Drug release studies were performed on hydrogel systems containing bovine serum albumin (BSA). The release profiles appear almost constant with little burst effect. The release rate depends not only on gelation conditions such as time and temperature, but also on factors such as drug load, as well as molar mass and concentration of the copolymers.  相似文献   

12.
Rong  Yan  Zhang  Zhen  He  Chaoliang  Chen  Xuesi 《中国科学:化学(英文版)》2020,63(8):1100-1111
Cell-material and cell-cell interactions represent two crucial aspects of the regulation of cell behavior. In the present study, poly(L-glutamic acid)(PLG) hydrogels were prepared by catalyst-free click crosslinking via a strain-promoted azide-alkyne cycloaddition(SPAAC) reaction between azido-grafted PLG(PLG-N_3) and azadibenzocyclooctyne-grafted PLG(PLG-ADIBO).The bioactive peptides c(RGDfK) and N-cadherin mimetic peptide(N-Cad) were both conjugated to the PLG hydrogel(denoted PLG+RGD/N-Cad) in order to regulate cell-material and cell-cell interactions. Gelation time and storage modulus of the hydrogels were tunable through variations in the concentration of polypeptide precursors. The hydrogels degraded gradually in the presence of proteinases. The viability of bone marrow mesenchymal stem cells(BMSCs) was maintained when cultured with extracts of the hydrogels or encapsulated within the hydrogels. Degradation was observed within 10 weeks following the subcutaneous injection of hydrogel solution in rats, displaying excellent histocompatibility in vivo. The introduction of RGD into the PLG hydrogel promoted the adhesion of BMSCs onto the hydrogels. Moreover, when encapsulated within the PLG+RGD/NCad hydrogel, BMSCs secreted cartilage-specific matrix, in addition to chondrogenic gene and protein expression being significantly enhanced in comparison with BMSCs encapsulated in hydrogels without N-Cad modification. These findings suggest that these biodegradable, bioactive polypeptide hydrogels have great potential for use in 3D cell culture and in cartilage tissue engineering.  相似文献   

13.
Formation of organic/inorganic hydrogels based on silicon- and titanium-glycerol precursors synthesized by transesterification of alkoxy derivatives in excess of glycerol was investigated. The precursors in excess of glycerol and obtained gels were studied by chemical and physical methods including gelation kinetics, IR spectroscopy, XRD, dynamic and electrophoretic light scattering, mechanical deformation, which disclosed the basic difference in the gelation mechanism and structure of network in the hydrogels. Due to this difference, the gelation time of silicon- and titanium-glycerol precursors depended on pH or electrolyte addition in an opposite way. In the wide pH range, silicon-glycerol hydrogel was a polymeric single-phase system formed by the polymeric network homogeneously swollen in liquid water/glycerol medium. Flory-Rehner theory applied to the elastic modulus of these gels gave 40-180 monomer base units in the subchains of the network depending on water content in the gel. The mechanism of networking was three-dimensional polycondensation promoted by the electrically charged functional groups attached to the flexible polymeric chains. Electrolyte solutions provided the gelation according to Hofmeister series. Titanium-glycerol hydrogels were heterogeneous colloid systems at pH>1.5 and single-phase polymeric gels at lower pH. Electrolyte solutions provided the gelation according to Schultze-Hardy rule.  相似文献   

14.
Strong injectable chitosan thermosensitive hydrogels can be created, without chemical modification, by combining sodium hydrogen carbonate with another weak base, namely, beta‐glycerophosphate (BGP) or phosphate buffer (PB). Here the influence of gelling agent concentration on the mechanical properties, gelation kinetics, osmolality, swelling, and compatibility for cell encapsulation, is studied in order to find the most optimal formulations and demonstrate their potential for cell therapy and tissue engineering. The new formulations present up to a 50‐fold increase of the Young's modulus after gelation compared with conventional chitosan‐BGP hydrogels, while reducing the ionic strength to the level of iso‐osmolality. Increasing PB concentration accelerates gelation but reduces the mechanical properties. Increasing BGP also has this effect, but to a lesser extent. Cells can be easily encapsulated by mixing the cell suspension within the hydrogel solution at room temperature, prior to rapid gelation at body temperature. After encapsulation, L929 mouse fibroblasts are homogeneously distributed within scaffolds and present a strongly increased viability and growth, when compared with conventional chitosan‐BGP hydrogels. Two particularly promising formulations are evaluated with human mesenchymal stem cells. Their viability and metabolic activity are maintained over 7 d in vitro.

  相似文献   


15.
Establishing the 3D microscale organization of cells has numerous practical applications, such as in determining cell fate (e.g., proliferation, migration, differentiation, and apoptosis) and in making functional tissue constructs. One approach to spatially pattern cells is by dielectrophoresis (DEP). DEP has characteristics that are important for cell manipulation, such as high accuracy, speed, scalability, and the ability to handle both adherent and non-adherent cells. However, widespread application of this method is largely restricted because there is a limited number of suitable hydrogels for cell encapsulation. To date, polyethylene glycol-diacrylate (PEG-DA) and agarose have been used extensively for dielectric patterning of cells. In this study, we propose gelatin methacrylate (GelMA) as a promising hydrogel for use in cell dielectropatterning because of its biocompatibility and low viscosity. Compared to PEG hydrogels, GelMA hydrogels showed superior performance when making cell patterns for myoblast (C2C12) and endothelial (HUVEC) cells as well as in maintaining cell viability and growth. We also developed a simple and robust protocol for co-culture of these cells. Combined application of the GelMA hydrogels and the DEP technique is suitable for creating highly complex microscale tissues with important applications in fundamental cell biology and regenerative medicine in a rapid, accurate, and scalable manner.  相似文献   

16.
Many cell-matrix interaction studies have proved that dynamic changes in the extracellular matrix(ECM)are crucial to maintain cellular properties and behaviors.Thus,developing materials that can recapitulate the dynamic attributes of the ECM is highly desired for threedimensional(3 D)cell culture platforms.To this end,we sought to develop a hydrogel system that would enable dynamic and reversible turning of its mechanical and biochemical properties,thus facilitating the control of cell culture to imitate the natural ECM.Herein,a hydrogel with dynamic mechanics and a biochemistry based on an addition-fragmentation chain transfer(AFCT)reaction was constructed.Thiol-modified hyaluronic acid(HA)and allyl sulfide-modifiedε-poly-L-lysine(EPL)were synthesized to form hydrogels,which were non-swellable and biocompatible.The reversible modulus of the hydrogel was first achieved through the AFCT reaction;the modulus can also be regulated stepwise by changing the dose of UVA irradiation.Dynamic patterning of fluorescent markers in the hydrogel was also realized.Therefore,this dynamically controllable hydrogel has great potential as a 3 D cell culture platform for tissue engineering applications.  相似文献   

17.
Double cross-linked dynamic hydrogels, dynagels, have been prepared through reversible imine bonds and supramolecular interactions, which showed good pH responsiveness, injectability, self-healing property and biocompatibility. With the further encapsulation of heparin, the obtained hydrogels exhibited good anti-bacterial activity and promotion effects for 3D cell culture.  相似文献   

18.
Supramolecular hydrogels have been prepared on the basis of polymer inclusion complex (PIC) formation between poly(ethylene glycol) (PEG)-modified chitosans and alpha-cyclodextrin (alpha-CD). A series of PEG-modified chitosans were synthesized by coupling reactions between chitosan and monocarboxylated PEG using water-soluble carbodiimide (EDC) as coupling agent. With simple mixing, the resultant supramolecular assembly of the polymers and alpha-CD molecules led to hydrogel formation in aqueous media. The supramolecular structure of the PIC hydrogels was confirmed by differential scanning calorimetry (DSC), X-ray diffraction, and (13)C cross-polarized/magic-angle spinning (CP/MAS) NMR characterization. The PEG side-chains on the chitosan backbones were found to form inclusion complexes (ICs) with alpha-CD molecules, resulting in the formation of channel-type crystalline micro-domains. The IC domains play an important role in holding together hydrated chitosan chains as physical junctions. The gelation property was affected by several factors including the PEG content in the polymers, the solution concentration, the mixing ratio of host and guest molecules, temperature, pH, etc. All the hydrogels in acidic conditions exhibited thermo-reversible gel-sol transitions under appropriate conditions of mixing ratio and PEG content in the mixing process. The transitions were induced by supramolecular association and dissociation. These supramolecular hydrogels were found to have phase-separated structures that consist of hydrophobic crystalline PIC domains, which were formed by the host-guest interaction between alpha-CD and PEG, and hydrated chitosan matrices below the pK(a).The formation of inclusion complexes between alpha-cyclodextrin and PEG-modified chitosan leads to the formation of hydrogels that can undergo thermo-reversible supramolecular dissociation.  相似文献   

19.
Partly charged poly(ethylene oxide) networks have been prepared by the cure reaction of multifunctional poly(ethylene glycol) phosphate precursors with the diglycidyl ether of triethylene glycol as a crosslinking agent. These new hydrogels display all the features of swelling behaviour characteristics of polyelectrolyte networks. The degree of volume swelling of the hydrogels varies from 16–95 (in distilled water) to 11–45 (in 0.1 M sodium chloride solution) and 7–20 ml/ml (in 0.52 M potassium sulfate as a Θ-solvent). Average chain length, ionic group content, and structure of gels are evaluated from the swelling data.The gelation point occurs at much higher crosslinking ratios and overall P-OH groups conversion than those predicted from the precursor functionality. The role of possible side reactions and some kinetic reasons for the ‘delayed’ gelation are discussed.  相似文献   

20.
通过活化改性聚L-谷氨酸(PLGA)制备酰肼化PLGA(PLGA-ADH)和3-氨基-1,2-丙二醇改性的PLGA(PLGA-OH),PLGA-OH经高碘酸钠氧化制得醛基化PLGA(PLGA-CHO),以PLGA-ADH和PLGA-CHO为前驱体,通过席夫碱交联反应构建了PLGA可注射水凝胶.研究了酰肼化和醛基化改性前后PLGA的结构变化,考察了固含量对水凝胶成胶时间、溶胀行为、机械性能、体外降解性能、药物释放行为及微观形貌等的影响,并进行了初步的细胞培养实验及裸鼠皮下注射成胶实验.结果表明,该PLGA可注射水凝胶在组织工程领域具有良好的应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号