首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Structures of protonated alane-Lewis base donor-acceptor complexes H2X2AlNHn(CH3)(3-n)+ (X = F, Cl, and Br; n = 0-3) as well as their neutral parents were investigated. All the monocations H2X2AlNHn(CH3)(3-n)+ are Al-H protonated involving hypercoordinated alane with a three-center two-electron bond and adopt the C(s) symmetry arrangement. The energetic results show that the protonated alane-Lewis complexes are more stable than the neutral ones. They also show that this stability decreases on descending in the corresponding periodic table column from fluorine to bromine atoms. The calculated protonation energies of HX2AlNHn(CH3)(3-n) to form H2X2AlNHn(CH3)(3-n)+ were found to be highly exothermic. The possible dissociation of the cations H2X2AlNHn(CH3)(3-n)+ into X2AlNHn(CH3)(3-n)+ and molecular H2 is calculated to be endothermic.  相似文献   

2.
The kinetics of the reactions of chlorinated methyl radicals (CH2Cl, CHCl2, and CCl3) with NO2 have been studied in direct measurements at temperatures between 220 and 360 K using a tubular flow reactor coupled to a photoionization mass spectrometer. The radicals have been homogeneously generated at 193 or 248 nm by pulsed laser photolysis of appropriate precursors. Decays of radical concentrations have been monitored in time-resolved measurements to obtain the reaction rate coefficients under pseudo-first-order conditions with the amount of NO2 being in large excess over radical concentrations. The bimolecular rate coefficients of all three reactions are independent of the bath gas (He or N2) and pressure within the experimental range (1-6 Torr) and are found to depend on temperature as follows: k(CH2Cl + NO2) = (2.16 +/- 0.08) x 10(-11) (T/300 K)(-1.12+/-0.24) cm3 molecule(-1) s(-1) (220-363 K), k(CHCl2 + NO2) = (8.90 +/- 0.16) x 10(-12) (T/300 K)(-1.48+/-0.13) cm3 molecule(-1) s(-1) (220-363 K), and k(CCl3 + NO2) = (3.35 +/- 0.10) x 10(-12) (T/300 K)(-2.2+/-0.4) cm3 molecule(-1) s(-1) (298-363 K), with the uncertainties given as one-standard deviations. Estimated overall uncertainties in the measured bimolecular reaction rate coefficients are about +/-25%. In the reactions CH2Cl + NO2, CHCl2 + NO2, and CCl3 + NO2, the products observed are formaldehyde, CHClO, and phosgene (CCl2O), respectively. In addition, a weak signal for the HCl formation has been detected for the CHCl2 + NO2 reaction.  相似文献   

3.
The theoretical investigations were performed on the reaction mechanisms for the title reactions CH(3)C(O)CH(3) + Cl --> products (R1), CH(3)C(O)CH(2)Cl + Cl --> products (R2), CH(3)C(O)CHCl(2) + Cl --> products (R3), and CH(3)C(O)CCl(3) + Cl --> products (R4) by ab initio direct dynamics approach. Two different reaction channels have been found: abstract of the H atom from methyl (--CH(3)) group or chloromethyl (--CH(3-n)Cl(n)) group of chloroacetone and addition of a Cl atom to the carbon atom of the carbonyl group of chloroacetone followed by methyl or chloromethyl eliminations. Because of the higher potential energy barrier, the contribution of addition-elimination reaction pathway to the total rate constants is very small and thus this pathway is insignificant in atmospheric conditions. The rate constants for the H-abstraction reaction channels are evaluated by using canonical variational transition state theory incorporating with the small-curvature tunneling correction. Theoretical overall rate constants are in good agreement with the available experimental values and decrease in the order of k(1) > k(2) > k(3) > k(4). The results indicate that for halogenated acetones the substitution of halogen atom (F or Cl) leads to the decrease in the C--H bond reactivity and more decrease of reactivity is caused by F-substitution.  相似文献   

4.
This paper reports that (alpha-diimine)PdMe+ catalyzes the copolymerization of olefins and silyl vinyl ethers. The reactions of (alpha-diimine)PdMe+ (alpha-diimine = (2,6-iPr2-C6H3)N=CMe-CMe=N(2,6-iPr2-C6H3)) with excess vinyl ethers CH2=CHOR (1a-d: R = tBu (a), SiMe3 (b), SiPh3 (c), Ph (d)) in CH2Cl2 at 20 degrees C afford polymers for 1a (rapidly) and 1b (slowly) but not for 1c or 1d. The structures of poly(1a,b) indicate a cationic polymerization mechanism. The reaction of (alpha-diimine)PdMe+ with 1-2 equiv of 1a-d proceeds by sequential C=C pi-complexation to form (alpha-diimine)PdMe(CH2=CHOR)+ (2a-d), 1,2 insertion to form (alpha-diimine)Pd(CH2CHMeOR)+ (3a-d), reversible isomerization to (alpha-diimine)Pd(CMe2OR)+ (4a-d), beta-OR elimination to generate (alpha-diimine)Pd(OR)(CH2=CHMe)+ (not observed), and allylic C-H activation to yield (alpha-diimine)Pd(eta3-C3H5)+ (5) and ROH. The reaction of (alpha-diimine)PdMe+ with 1-hexene/1b and 1-hexene/1c mixtures in CH2Cl2 at 20 degrees C affords copolymers containing up to 20 mol % silyl vinyl ether. The copolymers were purified to be free of any -[CH2CHOSiR3]n- homopolymer. The copolymer structures are similar to that of homopoly(1-hexene) generated under the same conditions. The major comonomer units are CH3CH(OSiR3)CH2-, CH2(OSiR3)CH2- and -CH2CH(OSiR3)CH2-. The 1-hexene/CH2=CHOSiR3 copolymers can be desilylated to give 1-hexene/CH2=CHOH copolymers. The results of control experiments argue against cationic and radical mechanisms for the copolymerization, and an insertion/chain-walking mechanism is proposed.  相似文献   

5.
The radical-molecule reaction mechanism of CHCl(2) and CCl(3) with NO(2) have been explored theoretically at the B3LYP/6-311G(d,p) and MC-QCISD (single-point) levels. For the singlet potential energy surface (PES) of CHCl(2) + NO(2) reaction, the association of CHCl(2) with NO(2) was found to be a barrierless carbon-to-nitrogen approach forming an energy-rich adduct a (HCl(2)CNO(2)) followed by isomerization to b(1) (trans-cis-HCl(2)CONO), which can easily interconvert to b(2), b(3), and b(4). Subsequently, the most feasible pathway is the 1,3-chlorine migration associated with N-O1 bond cleavage of b(1) leading to P(1) (CHClO + ClNO). The second competitive pathway is the 1,4-chlorine migration along with N-O1 bond rupture of b(4) giving rise to P(2) (CHClO + ClON). Moreover, some of P(1) and P(2) can further dissociate to give P(6) (CHClO + Cl + NO). The lesser followed competitive channel is the 1,3-H-shift from C to N atom along with N-O1 bond rupture of b(1) to form P(3) (CCl(2)O + HNO). The concerted 1,4-H-shift accompanied by N-O1 bond fission of b(3) to product P(4) (CCl(2)O + HON) is even much less feasible. For the singlet PES of CCl(3) + NO(2) reaction, the only primary product is found to be P(1) (CCl(2)O + ClNO), which can lead to P(2) (CCl(2)O + Cl + NO) via dissociation of ClNO. The obtained major products CHClO and CCl(2)O for CHCl(2) + NO(2) and CCl(3) + NO(2) reactions, respectively, are in good agreement with kinetic detection in experiment. Compared with the singlet pathways, the triplet pathways may have less contributions to both reactions. Because the rate-determining transition state involved in the feasible pathways lie above the reactants R, the title reactions may be important in high-temperature processes. The similarities and discrepancies among the CH(n)Cl(3-n) + NO(2) (n == 0-2) reactions are discussed in terms of the substitution effect. The present study may be helpful for further experimental investigation of the title reactions.  相似文献   

6.
The title reactions were studied using laser flash photolysis/laser-induced-fluorescence (FP-LIF) techniques. The two spin-orbit states, Cl*(2P(1/2)) and Cl(2P(3/2)), were detected using LIF at 135.2 and 134.7 nm, respectively. Measured reaction rate constants were as follows (units of cm3 molecule(-1) s(-1)): k(Cl(2P(3/2))+CH3OH) = (5.35 +/- 0.24) x 10(-11), k(Cl(2P(3/2))+C2H5OH) = (9.50 +/- 0.85) x 10(-11), k(Cl(2P(3/2))+n-C3H7OH) = (1.71 +/- 0.11) x 10(-10), and k(Cl(2P(3/2))+i-C3H7OH) = (9.11 +/- 0.60) x 10(-11). Measured rate constants for total removal of Cl*(2P(1/2)) in collisions with CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH were (1.95 +/- 0.13) x 10(-10), (2.48 +/- 0.18) x 10(-10), (3.13 +/- 0.18) x 10(-10), and (2.84 +/- 0.16) x 10(-10), respectively; quoted errors are two-standard deviations. Although spin-orbit excited Cl*(2P(1/2)) atoms have 2.52 kcal/mol more energy than Cl(2P(3/2)), the rates of chemical reaction of Cl*(2P(1/2)) with CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH are only 60-90% of the corresponding Cl(2P(3/2)) atom reactions. Under ambient conditions spin-orbit excited Cl* atoms are responsible for 0.5%, 0.5%, 0.4%, and 0.7% of the observed reactivity of thermalized Cl atoms toward CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH, respectively.  相似文献   

7.
The syntheses of the vinyloxycyclotriphosphazene derivatives N3P3X5OCH=CH2 (X = OMe, OCH2CF3) and the N3P3(NMe2)4(OCH=CH2)2 isomeric mixture along with improved preparations of N3P3X5OCH=CH2 (X = F, NMe2) are reported. The interactions between the vinyloxy function and the cyclophosphazene in these and the previously reported N3P3Cl5 (OCH=CH2) and N3P3F6-n(OCH=CH2)n (n = 1-4) have been examined by ultraviolet photoelectron spectroscopy (UPS) and NMR spectroscopy. The UPS data for the chloro and fluoro derivatives show a strong electron-withdrawing effect of the phosphazene on the olefin that is mediated with decreasing halogen substitution. The 1H and 13C NMR data for N3P3X5OCH=CH2 (X = F, Cl, OMe, OCH2CF3, NMe2) show significant changes as a function of the phosphazene substituent. There is a linear correlation between the beta-carbon chemical shift on the vinyloxy unit and the phosphorus chemical shift at the vinyloxyphosphorus centers. The chemical shifts of the different phosphorus centers on each ring are also related in a linear fashion. These relationships may be understood in terms of the relative electron donor-acceptor abilities of the substituents on the phosphazene ring. The 1H NMR spectra of the N3P3(NMe2)4(OCH-CH2)2 isomeric mixture allow for assignment of the relative amounts of cis and trans isomers. A model for the observed cis preference in the formation of N3P3Cl4(OCH=CH)2 is presented.  相似文献   

8.
自由基CN、CH、H在燃烧化学、大气化学、天体发光、环境污染等方面占有极为重要的地位,对于这些自由基发光及形成动力学机理的探讨,无疑是重要的.近年来,人们利用亚稳态惰性原子与膨化物碰撞传能,探讨了CN(AB-+X)的化学发光[‘一、发现亚稳态的Ar(‘几,。)原子与H  相似文献   

9.
Eight exothermic product channels of the reaction of chlorinated vinyl radical (C2Cl3) with molecular oxygen (O2) have been investigated using ab initio quantum chemistry methods. The energetics of the reaction pathways were calculated at the second-order Moller-Plesset Gaussian-3 level of theory (G3MP2) using the B3LYP/6-311G(d) optimized geometries. It has been shown that the C2Cl3 + O2 reaction takes place via a barrierless addition to form the chlorinated vinylperoxy radical complex, which can decompose or isomerize to various products via the complicated mechanisms. Two major reaction routes were revealed, i.e., the three-member-ring reaction mechanism leading to ClCO + CCl2O, CO + CCl3O, CO2 + CCl3, Cl + (ClCO)2, etc., and the OO bond cleavage mechanism leading to O(3P) + C2Cl3O. The other mechanisms are shown to be unimportant. The results are validated by the calculations using the restricted coupled cluster theory [RCCSD(T)] with the complete basis set extrapolation. Variational transition state theory was employed to calculate the individual and total rate coefficients as a function of temperature and pressure (helium). The theoretical rate coefficients are in good agreement with the available experimental data. It was found that the total rate coefficients show strong negative temperature dependence in the range 200-2000 K. At room temperature (297 K), the total rate coefficients are shown to be nearly pressure independent over a wide range of helium pressures (1-10(9) Torr). The deactivation of the initial adduct, C2Cl3O2, is only significant at pressures higher than 1000 Torr. The three-member-ring reaction mechanism is always predominant over the OO bond cleavage.  相似文献   

10.
The mechanisms of the C(3P)+H 2S→HCS+H and C(3P)+H 2S → HSC+H reactions have been studied at the UMP2/6-31G(d,p),UMP2/6-311G(d,p),and G2 levels, and six transition states and three intermediates have been located along the reaction paths. The predicted path for the C(3P)+H2S→HCS+H reaction is: C(3P)+H2S→IM1→TS1→IM2→TS4→HCS+H, in line with the reaction process suggested by Lee et al. [1] in which only the intermediates were given. Our energetic results indicate that the C(3P)+H2S→HCS+H reaction is more favorable than the C(3P)+H 2S→HSC+H reaction, in agreement with experiment.  相似文献   

11.
Relative rate techniques were used to study the kinetics of the reactions of Cl atoms and OH radicals with ethylene glycol diacetate, CH3C(O)O(CH2)2OC(O)CH3, in 700 Torr of N2/O2 diluent at 296 K. The rate constants measured were k(Cl + CH3C(O)O(CH2)2OC(O)CH3) = (5.7 +/- 1.1) x 10(-12) and k(OH + CH3C(O)O(CH2)2OC(O)CH3) = (2.36 +/- 0.34) x 10(-12) cm3 molecule-1 s-1. Product studies of the Cl atom initiated oxidation of ethylene glycol diacetate in the absence of NO in 700 Torr of O2/N2 diluent at 296 K show the primary products to be CH3C(O)OC(O)CH2OC(O)CH3, CH3C(O)OC(O)H, and CH3C(O)OH. Product studies of the Cl atom initiated oxidation of ethylene glycol diacetate in the presence of NO in 700 Torr of O2/N2 diluent at 296 K show the primary products to be CH3C(O)OC(O)H and CH3C(O)OH. The CH3C(O)OCH2O* radical is formed during the Cl atom initiated oxidation of ethylene glycol diacetate, and two loss mechanisms were identified: reaction with O2 to give CH3C(O)OC(O)H and alpha-ester rearrangement to give CH3C(O)OH and HC(O) radicals. The reaction of CH3C(O)OCH2O2* with NO gives chemically activated CH3C(O)OCH2O* radicals which are more likely to undergo decomposition via the alpha-ester rearrangement than CH3C(O)OCH2O* radicals produced in the peroxy radical self-reaction.  相似文献   

12.
The scattering dynamics leading to the formation of Cl (2P(3/2)) and Cl* (2P(1/2)) products of the CH(3)+HCl reaction (at a mean collision energy =22.3 kcal mol(-1)) and the Cl (2P(3/2)) products of the CD(3)+HCl reaction (at =19.4 kcal mol(-1)) have been investigated by using photodissociation of CH(3)I and CD(3)I as sources of translationally hot methyl radicals and velocity map imaging of the Cl atom products. Image analysis with a Legendre moment fitting procedure demonstrates that, in all three reactions, the Cl/Cl* products are mostly forward scattered with respect to the HCl in the center-of-mass (c.m.) frame but with a backward scattered component. The distributions of the fraction of the available energy released as translation peak at f(t)=0.31-0.33 for all the reactions, with average values that lie in the range =0.42-0.47. The detailed analysis indicates the importance of collision energy in facilitating the nonadiabatic transitions that lead to Cl* production. The similarities between the c.m.-frame scattering and kinetic energy release distributions for Cl and Cl* channels suggest that the nonadiabatic transitions to a low-lying excited potential energy surface (PES) correlating to Cl* products occur after passage through the transition state region on the ground-state PES. Branching fractions for Cl* are determined to be 0.14+/-0.02 for the CH(3)+HCl reaction and 0.20+/-0.03 for the CD(3)+HCl reaction. The difference cannot be accounted for by changes in collision energy, mass effects, or vibrational excitation of the photolytically generated methyl radical reagents and instead suggests that the low-frequency bending modes of the CD(3)H or CH(4) coproduct are important mediators of the nonadiabatic couplings occurring in this reaction system.  相似文献   

13.
We present ab initio calculations of the reaction of ground-state atomic oxygen [O((3)P)] with a propargyl (C(3)H(3)) radical based on the application of the density-functional method and the complete basis-set model. It has been predicted that the barrierless addition of O((3)P) to C(3)H(3) on the lowest doublet potential-energy surface produces several energy-rich intermediates, which undergo subsequent isomerization and decomposition steps to generate various exothermic reaction products: C(2)H(3)+CO, C(3)H(2)O+H, C(3)H(2)+OH, C(2)H(2)+CHO, C(2)H(2)O+CH, C(2)HO+CH(2), and CH(2)O+C(2)H. The respective reaction pathways are examined extensively with the aid of statistical Rice-Ramsperger-Kassel-Marcus calculations, suggesting that the primary reaction channel is the formation of propynal (CHCCHO)+H. For the minor C(3)H(2)+OH channel, which has been reported in recent gas-phase crossed-beam experiments [H. Lee et al., J. Chem. Phys. 119, 9337 (2003); 120, 2215 (2004)], a comparison on the basis of prior statistical calculations is made with the nascent rotational state distributions of the OH products to elucidate the mechanistic and dynamic characteristics at the molecular level.  相似文献   

14.
The synthesis of perfluoroalkyl-substituted "pincer"-type PCP ligands, 1,3-C6H4(CH2P(Rf)2)2 (Rf = CF3, C2F5), and platinum coordination studies (Rf = CF3) are reported. 1,3-C6H4(CH2P(CF3)2)2 (CF3PCPH) reacts at ambient temperatures with (cod)Pt(Me)Cl (cod = 1,5-cyclooctadiene) and (cod)PtMe2 to afford unmetalated PCPH-bridged products [(CF3PCPH)Pt(Me)Cl]x and cis-[(CF3PCPH)PtMe2]2, respectively. cis-[(CF3PCPH)PtMe2]2 is soluble and has been spectroscopically and crystallographically characterized. Thermolysis of these compounds results in the loss of methane and the formation of metalated complexes (CF3PCP)PtCl and (CF3PCP)PtMe. Treatment of (CF3PCP)PtCl with MeMgBr provides an alternative route to (CF3PCP)PtMe. The carbonyl cation (CF3PCP)Pt(CO)+SbF6- (nu(CO) = 2143 cm(-1)) was readily prepared by chloride abstraction with AgSbF6 under 1 atm CO. nu(CO) data indicates that RfPCP ligands are electronically analogous to trans acceptor phosphine complexes such as trans-((C2F5)2PMe)2Pt(Me)(CO)+ (nu(CO) = 2149 cm-1).  相似文献   

15.
The hydrogen abstraction reactions of Cl atom with a series of fluorinated alcohols, i.e., CH(3-n)F(n)CH(2)OH + Cl (n = 1-3) (R1-R3) have been studied systematically by ab initio direct dynamics method and the canonical variational transition state theory (CVT). The potential energy surface information is calculated at the MP2/6-311G(d,p) level. Energies along the minimum energy paths are improved by a series of single-point calculations at the higher modified GAUSSIAN-2 (G2M) level of theory. Theoretical analysis shows that three kinds of hydrogen atoms can be abstracted from the reactants CH(2)FCH(2)OH and CHF(2)CH(2)OH, and for CF(3)CH(2)OH, two possible pathways are found. The rate constants for each reaction channel are evaluated by CVT with the small-curvature tunneling correction (SCT) over a wide range of temperature from 200 to 2000 K. The calculated CVT/SCT rate constants are in good agreement with the available experimental values for the reactions CHF(2)CH(2)OH + Cl and CF(3)CH(2)OH + Cl. However, for the reaction CH(2)FCH(2)OH + Cl, there is negative temperature dependence below 500 K, which is different from the experimental fitted. It is shown that in the low temperature ranges, the three reactions all proceed predominantly via H-abstraction from the methylene positions, and with the increase of the temperature the H-abstraction channels from the fluorinated-methyl positions should be taken into account, while the H-abstraction channels from the hydroxyl groups are negligible over the whole temperature ranges. Also, the reactivity decreases substantially with fluorine substitution at the methyl position of alcohol.  相似文献   

16.
A beam containing CH(4), Cl(2), and He is expanded into a vacuum chamber where CH(4) is prepared via infrared excitation in a combination band consisting of one quantum of excitation each in the bending and torsional modes (nu(2)+nu(4)). The reaction is initiated by fast Cl atoms generated by photolysis of Cl(2) at 355 nm, and the resulting CH(3) and HCl products are detected in a state-specific manner using resonance-enhanced multiphoton ionization (REMPI). By comparing the relative amplitudes of the action spectra of Cl+CH(4)(nu(2)+nu(4)) and Cl+CH(4)(nu(3)) reactions, we determine that the nu(2)+nu(4) mode-driven reaction is at least 15% as reactive as the nu(3) (antisymmetric stretch) mode-driven reaction. The REMPI spectrum of the CH(3) products shows no propensity toward the formation of umbrella bend mode excited methyl radical, CH(3)(nu(2)=1), which is in sharp distinction to the theoretical expectation based on adiabatic correlations between CH(4) and CH(3). The rotational distribution of HCl(v=1) products from the Cl+CH(4)(nu(2)+nu(4)) reaction is hotter than the corresponding distribution from the Cl+CH(4)(nu(3)) reaction, even though the total energies of the two reactions are the same within 4%. An explanation for this enhanced rotational excitation of the HCl product from the Cl+CH(4)(nu(2)+nu(4)) reaction is offered in terms of the projection of the bending motion of the CH(4) reagent onto the rotational motion of the HCl product. The angular distributions of the HCl(nu=0) products from the Cl+CH(4)(nu(2)+nu(4)) reaction are backward scattered, which is in qualitative agreement with theoretical calculation. Overall, nonadiabatic product vibrational correlation and mode specificity of the reaction indicate that either the bending mode or the torsional mode or both modes are strongly coupled to the reaction coordinate.  相似文献   

17.
The atmospheric chemistry of two C(4)H(8)O(2) isomers (methyl propionate and ethyl acetate) was investigated. With relative rate techniques in 980 mbar of air at 293 K the following rate constants were determined: k(C(2)H(5)C(O)OCH(3) + Cl) = (1.57 ± 0.23) × 10(-11), k(C(2)H(5)C(O)OCH(3) + OH) = (9.25 ± 1.27) × 10(-13), k(CH(3)C(O)OC(2)H(5) + Cl) = (1.76 ± 0.22) × 10(-11), and k(CH(3)C(O)OC(2)H(5) + OH) = (1.54 ± 0.22) × 10(-12) cm(3) molecule(-1) s(-1). The chlorine atom initiated oxidation of methyl propionate in 930 mbar of N(2)/O(2) diluent (with, and without, NO(x)) gave methyl pyruvate, propionic acid, acetaldehyde, formic acid, and formaldehyde as products. In experiments conducted in N(2) diluent the formation of CH(3)CHClC(O)OCH(3) and CH(3)CCl(2)C(O)OCH(3) was observed. From the observed product yields we conclude that the branching ratios for reaction of chlorine atoms with the CH(3)-, -CH(2)-, and -OCH(3) groups are <49 ± 9%, 42 ± 7%, and >9 ± 2%, respectively. The chlorine atom initiated oxidation of ethyl acetate in N(2)/O(2) diluent gave acetic acid, acetic acid anhydride, acetic formic anhydride, formaldehyde, and, in the presence of NO(x), PAN. From the yield of these products we conclude that at least 41 ± 6% of the reaction of chlorine atoms with ethyl acetate occurs at the -CH(2)- group. The rate constants and branching ratios for reactions of OH radicals with methyl propionate and ethyl acetate were investigated theoretically using transition state theory. The stationary points along the oxidation pathways were optimized at the CCSD(T)/cc-pVTZ//BHandHLYP/aug-cc-pVTZ level of theory. The reaction of OH radicals with ethyl acetate was computed to occur essentially exclusively (~99%) at the -CH(2)- group. In contrast, both methyl groups and the -CH(2)- group contribute appreciably in the reaction of OH with methyl propionate. Decomposition via the α-ester rearrangement (to give C(2)H(5)C(O)OH and a HCO radical) and reaction with O(2) (to give CH(3)CH(2)C(O)OC(O)H) are competing atmospheric fates of the alkoxy radical CH(3)CH(2)C(O)OCH(2)O. Chemical activation of CH(3)CH(2)C(O)OCH(2)O radicals formed in the reaction of the corresponding peroxy radical with NO favors the α-ester rearrangement.  相似文献   

18.
A relative rate experiment is carried out for six isotopologues of methanol and their reactions with OH and Cl radicals. The reaction rates of CH2DOH, CHD2OH, CD3OH, (13)CH3OH, and CH3(18)OH with Cl and OH radicals are measured by long-path FTIR spectroscopy relative to CH3OH at 298 +/- 2 K and 1013 +/- 10 mbar. The OH source in the reaction chamber is photolysis of ozone to produce O((1)D) in the presence of a large excess of molecular hydrogen: O((1)D) + H2 --> OH + H. Cl is produced by the photolysis of Cl2. The FTIR spectra are fitted using a nonlinear least-squares spectral fitting method with measured high-resolution infrared spectra as references. The relative reaction rates defined as alpha = k(light)/k(heavy) are determined to be: k(OH + CH3OH)/k(OH + (13)CH3OH) = 1.031 +/- 0.020, k(OH + CH3OH)/k(OH + CH3(18)OH) = 1.017 +/- 0.012, k(OH + CH3OH)/k(OH + CH2DOH) = 1.119 +/- 0.045, k(OH + CH3OH)/k(OH + CHD2OH) = 1.326 +/- 0.021 and k(OH + CH3OH)/k(OH + CD3OH) = 2.566 +/- 0.042, k(Cl + CH3OH)/k(Cl + (13)CH3OH) = 1.055 +/- 0.016, k(Cl + CH3OH)/k(Cl + CH3(18)OH) = 1.025 +/- 0.022, k(Cl + CH3OH)/k(Cl + CH2DOH) = 1.162 +/- 0.022 and k(Cl + CH3OH)/k(Cl + CHD2OH) = 1.536 +/- 0.060, and k(Cl + CH3OH)/k(Cl + CD3OH) = 3.011 +/- 0.059. The errors represent 2sigma from the statistical analyses and do not include possible systematic errors. Ground-state potential energy hypersurfaces of the reactions were investigated in quantum chemistry calculations at the CCSD(T) level of theory with an extrapolated basis set. The (2)H, (13)C, and (18)O kinetic isotope effects of the OH and Cl reactions with CH3OH were further investigated using canonical variational transition state theory with small curvature tunneling and compared to experimental measurements as well as to those observed in CH4 and several other substituted methane species.  相似文献   

19.
The nucleophilicity of the [Pt(2)S(2)] core in [[Ph(2)P(CH(2))(n)PPh(2)]Pt(mu-S)(2)Pt[Ph(2)P(CH(2))(n)PPh(2)]] (n = 3, dppp (1); n = 2, dppe (2)) metalloligands toward the CH(2)Cl(2) solvent has been thoroughly studied. Complex 1, which has been obtained and characterized by X-ray diffraction, is structurally related to 2 and consists of dinuclear molecules with a hinged [Pt(2)S(2)] central ring. The reaction of 1 and 2 with CH(2)Cl(2) has been followed by means of (31)P, (1)H, and (13)C NMR, electrospray ionization mass spectrometry, and X-ray data. Although both reactions proceed at different rates, the first steps are common and lead to a mixture of the corresponding mononuclear complexes [Pt[Ph(2)P(CH(2))(n)PPh(2)](S(2)CH(2))], n = 3 (7), 2 (8), and [Pt[Ph(2)P(CH(2))(n)PPh(2)]Cl(2)], n = 3 (9), 2 (10). Theoretical calculations give support to the proposed pathway for the disintegration process of the [Pt(2)S(2)] ring. Only in the case of 1, the reaction proceeds further yielding [Pt(2)(dppp)(2)[mu-(SCH(2)SCH(2)S)-S,S']]Cl(2) (11). To confirm the sequence of the reactions leading from 1 and 2 to the final products 9 and 11 or 8 and 10, respectively, complexes 7, 8, and 11 have been synthesized and structurally characterized. Additional experiments have allowed elucidation of the reaction mechanism involved from 7 to 11, and thus, the origin of the CH(2) groups that participate in the expansion of the (SCH(2)S)(2-) ligand in 7 to afford the bridging (SCH(2)SCH(2)S)(2-) ligand in 11 has been established. The X-ray structure of 11 is totally unprecedented and consists of a hinged [(dppp)Pt(mu-S)(2)Pt(dppp)] core capped by a CH(2)SCH(2) fragment.  相似文献   

20.
Nonadiabatic dynamics in the title reaction have been investigated by 2+1 REMPI detection of the Cl(2P(3/2)) and Cl*(2P(1/2)) products. Reaction was initiated by photodissociation of CH(3)I at 266 nm within a single expansion of a dilute mixture of CH(3)I and HCl in argon, giving a mean collision energy of 7800 cm(-1) in the center-of-mass frame. Significant production of Cl* was observed, with careful checks made to ensure that no additional photochemical or inelastic scattering sources of Cl* perturbed the measurements. The fraction of the total yield of Cl(2P(J)) atoms formed in the J=1/2 level at this collision energy was 0.150+/-0.024, and must arise from nonadiabatic dynamics because the ground potential energy surface correlates to CH(4)+Cl(2P(3/2)) products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号