首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The photoluminescence (PL) of Mn-implanted quantum dot (QD) samples after rapid annealing is studied. It is found that the blue shift of the PL peak of the QDs, introduced by the rapid annealing, decreases abnormally as the implantation dose increases. This anomaly is probably related to the migration of Mn atoms to the InAs QDs during annealing, which leads to strain relaxation when Mn atoms enter InAs QDs or to the suppression of the inter-diffusion of In and Ga atoms when Mn atoms surround QDs. Both effects will suppress the blue shift of the QD PL peaks. The temperature dependence of the PL intensity of the heavily implanted QDs confirms the existence of defect traps around the QDs.  相似文献   

2.
l-glutathione (GSH) stabilized CdTe quantum dots (QDs) were directly prepared in aqueous solution. The as-prepared QDs were linked to prostate-specific antigen (PSA) for the direct labeling and linked to immunoglobulin G (IgG) for the indirect labeling of fixed prostate cancer cells. The results indicated that QD-based probes were ideal fluorescent markers with excellent spectral properties and photostability and much better than organic dyes making them very suitable in target detection. Meanwhile, the indirect labeling showed much better specificity than the direct labeling. Furthermore, the prepared CdTe QDs did not show detectable effect on cell growth after having cultured for three days, which suggested that the l-glutathione capped CdTe had scarcely cytotoxicity.  相似文献   

3.
The aging of the photoluminescence (PL) in bio-conjugated and non-conjugated CdSeTe–ZnS core–shell quantum dots (QDs) is studied by the micro-PL, micro-Raman and X-ray diffraction (XRD) in the samples of buffered QD solution dried on a crystalline Si wafer and stored in the atmospheric ambience for about 2 years. The aging of the PL consists in a “blue” spectral shift of the PL band, an increase in PL band half-width and the decrease in the PL intensity. These changes are more pronounced in the conjugated QD samples. The XRD analysis of the aged samples revealed that the QD core diameter is reduced by ∼1.5 nm in the conjugated QDs as compared to the non-conjugated ones. The possible mechanism of PL spectrum aging is the oxidation that decreases the QD core dimension. It is concluded that the bio-conjugation promotes QD oxidation and the mechanism of the effect is proposed.  相似文献   

4.
We studied the optical properties of multiple layers of self-assembled CdSe quantum dots (QDs) embedded in ZnSe, grown by molecular beam epitaxy. The ZnSe barrier thicknesses separating the QD layers ranged from 30 to 60 monolayers (ML). For stacks with thinnest ZnSe barriers photoluminescence (PL) measurements reveal blue shifts as large as 180 meV relative to PL observed for single QD layers. The amount of blue shift decreases with increasing barrier thickness, and for the 60 ML spacer the PL energy returns to that emitted by a single layer of QDs. Temperature dependence of the integrated intensity of the emission spectra reveals that the activation energy for PL quenching is largest for barrier thicknesses of 30 and 45 ML. We tentatively attribute these effects to a decrease in the size of the vertically stacked QDs when the thickness of the barrier layers is small.  相似文献   

5.
We investigate size-dependent carrier dynamics in self-assembled CdTe/ZnTe quantum dots (QDs) grown using molecular beam epitaxy and atomic layer epitaxy. Photoluminescence (PL) spectra show that the excitonic peak corresponding to transitions from the ground electronic subband to ground heavy-hole band in CdTe/ZnTe QDs shifts to a lower energy with increasing ZnTe buffer thicknesses. This shift of the PL peak can be attributed to size variation of the CdTe QDs. In particular, carrier dynamics in CdTe QDs grown on various ZnTe buffer layer thicknesses is studied using time-resolved PL measurements. As a result, the decay time of CdTe QDs is shown to increase with increasing ZnTe buffer layer thicknesses due to the reduction of the exciton oscillator strength in the larger QDs.  相似文献   

6.
InAs quantum dots (QDs) were grown on InP substrates by metalorganic chemical vapor deposition. The width and height of the dots were 50 and 5.8 nm, respectively on the average and an areal density of 3.0×1010 cm−2 was observed by atomic force microscopy before the capping process. The influences of GaAs, In0.53Ga0.47As, and InP capping layers (5–10 ML thickness) on the InAs/InP QDs were studied. Insertion of a thin GaAs capping layer on the QDs led to a blue shift of up to 146 meV of the photoluminescence (PL) peak and an InGaAs capping layer on the QDs led to a red shift of 64 meV relative to the case when a conventional InP capping layer was used. We were able to tune the emission wavelength of the InAs QDs from 1.43 to 1.89 μm by using the GaAs and InGaAs capping layers. In addition, the full-width at half-maximum of the PL peak decreased from 79 to 26 meV by inserting a 7.5 ML GaAs layer. It is believed that this technique is useful in tailoring the optical properties of the InAs QDs at mid-infrared regime.  相似文献   

7.
We have fabricated a Schottky diode embedding InAs self-assembled quantum dots (QDs) grown by alternately supplying In and As sources. As a function of the electric field, we have investigated the photoluminescence (PL) for the InAs QDs in the Schottky diode at 300 K. We controlled the electric field in order that the QD layer was located in the depletion region of Schottky diode. The relationship between the electric field and the depletion width of the Schottky diode was deduced through the capacitance-voltage measurement. The Stark shift was observed in PL spectra for QDs; the energy of the PL line shifted to the lower energy as the electric field increased. It was also observed that the PL emission intensity gradually decreased. By the fitting to the experimental data, we determined a built-in dipole moment, corresponding to an electron-hole separation.  相似文献   

8.
研究了不同Mn/Pb量比的Mn掺杂CsPbCl3(Mn:CsPbCl3)钙钛矿量子点的发光性质。Mn/Pb的量比增加引起的Mn2+发光峰的红移,被认为是来源于高浓度Mn2+掺杂下的Mn2+-Mn2+对。进一步研究了Mn:CsPbCl3量子点的发光效率与Mn/Pb的量比之间的关系,发现随着量比达到5:1时,其发光效率明显下降。这种发光效率下降是由于Mn掺杂浓度引起的发光猝灭。Mn:CsPbCl3量子点的变温发光光谱证实,随着温度的升高,Mn离子发光峰蓝移,线宽加宽,但其发光强度明显增加。  相似文献   

9.
刘宁  金鹏  王占国 《中国物理 B》2012,(11):410-413
We report the effect of the GaAs spacer layer thickness on the photoluminescence(PL) spectral bandwidth of InAs/GaAs self-assembled quantum dots(QDs).A PL spectral bandwidth of 158 nm is achieved with a five-layer stack of InAs QDs which has a 11-nm thick GaAs spacer layer.We investigate the optical and the structural properties of the multilayer-stacked InAs/GaAs QDs with different GaAs spacer layer thicknesses.The results show that the spacer thickness is a key parameter affecting the multi-stacked InAs/GaAs QDs for wide-spectrum emission.  相似文献   

10.
采用原位聚合法制备了以ZnO量子点为核、石墨烯量子点(GQDs)为壳的ZnO@ GQDs核壳结构量子点。通过TEM和HR-TEM对量子点进行形貌和结构的分析表征。结果表明,合成的ZnO@ GQDs核壳结构量子点为球形,粒径为~7 nm,且尺寸均匀。PL光谱研究表明,新型量子点的发射峰位于369 nm,发光峰窄、强度高;相对于ZnO的本征发射峰,GQDs的引入使得ZnO@GQDs核壳量子点的荧光发射峰出现蓝移、强度变高,从而使复合量子点的荧光具有较纯的色度和较高的强度,说明GQDs的引入具有协同优化效应。该量子点有望应用于LED显示器件。  相似文献   

11.
Multilayered Zn–Se–Te structures grown by migration enhanced epitaxy are studied by temperature- and excitation-dependent photoluminescence (PL) as well as magneto-PL. The PL consists of two bands: a blue band, overlaid with band edge sharp lines, dominant at low temperatures and high excitation, and a green band, which appears at elevated temperature and low excitation. Upon varying excitation intensity by four orders of magnitude, the green band peak energy shifts by ∼60 meV, indicating recombination of excitons in type-II quantum dots (QDs); no significant shift is observed for the blue band. Therefore, the green emission is attributed to ZnTe/ZnSe type-II QDs, which co-exist with isoelectronic centers, responsible for the blue and band edge emissions. The existence of type-II ZnTe/ZnSe QDs is further confirmed by magneto-PL, for which the observed oscillations in the PL intensity as a function of magnetic field is explained in terms of the optical Aharonov–Bohm effect.  相似文献   

12.
We report a photoluminescence (PL) energy red-shift of single quantum dots (QDs) by applying an in-plane compressive uniaxial stress along the [110] direction at a liquid nitrogen temperature. Uniaxial stress has an effect not only on the confinement potential in the growth direction which results in the PL shift, but also on the cylindrical symmetry of QDs which can be reflected by the change of the full width at half maximum of PL peak. This implies that uniaxial stress has an important role in tuning PL energy and fine structure splitting of QDs.  相似文献   

13.
We investigate the effects of a thin AlAs layer with different position and thickness on the optical properties of InAs quantum dots (QDs) by using transmission electron microscopy and photoluminescence (PL). The energy level shift of InAs QD samples is observed by introducing the thin AlAs layer without any significant loss of the QD qualities. The emission peak from InAs QDs directly grown on the 4 monolayer (ML) AlAs layer is blueshifted from that of reference sample by 219 meV with a little increase in FWHM from 42–47 meV for ground state. In contrast, InAs QDs grown under the 4 ML AlAs layer have PL peak a little redshifted to lower energy by 17 meV. This result is related to the interdiffusion of Al atom at the InAs QDs caused by the annealing effect during growing of InAs QDs on AlAs layer.  相似文献   

14.
We combined a sandwich immunoassay, anti-CEA/CEA/anti-CEA, with functional magnetic (~80 nm) and fluorescent (~180 nm) nanoparticles in magnetic separators to demonstrate a detection method for carcinoembryonic antigen (CEA). Determination of CEA in serum can be used in clinical diagnosis and monitoring of tumor-related diseases. The CEA concentrations in samples were deduced and determined based on the reference plot using the measured fluorescent intensity of sandwich nanoparticles from the sample. The linear range of CEA detection was from 18 ng/mL to 1.8 pg/mL. The detection limit of CEA was 1.8 pg/mL. In comparison with most other detection methods, this method had advantages of lower detection limit and wider linear range. The recovery was higher than 94%. The CEA concentrations of two serum samples were determined to be 9.0 and 55 ng/mL, which differed by 6.7% (9.6 ng/mL) and 9.1% (50 ng/mL) from the measurements of enzyme-linked immunosorbent assay (ELISA), respectively. The analysis time can be reduced to one third of ELISA. This method has good potential for other biomarker detections and biochemical applications.  相似文献   

15.
This article presents the evolution of the photo-luminescence (PL) of silicon quantum dots (QDs) with an average diameter of 5–6 nm dispersed in alcohol under different conditions. Two samples were considered after alcohol dispersion: freshly synthesized (kept in air for 2 days) QDs which do not exhibit luminescence and air-aged (kept in air for 2 years) QDs exhibiting red-IR luminescence. Experiments performed with addition of a small volume of water, followed by heating for different times showed that the oxidation occurs gradually until transforming totally the initial material in SiO2. The oxidation process does not enable the appearance of PL from the Si core for dispersed non-aged powders, while it results in a blue shift of the PL maximum intensity for the aged ones. The results obtained after UV illumination clearly indicate an effect of the UV irradiation on the luminescence of QDs dispersed in aqueous environment, and the treatments with acidic water lead to the conclusion of a possible enhancement of the PL by hydrogen passivation of the non-radiative defects. This result should be taken into account for post-production treatments and applications, more particularly, considering a controlled and safe use of luminescent Si QDs.  相似文献   

16.
InAs quantum dots (QDs) were grown on InP substrates by low pressure-metalorganic chemical vapor deposition. Disilane (Si2H6) was used as an n-type dopant. The positions of Si doping were varied: buffer layer, capping layer, modulation doping, and QD itself. Surface treatment of InP by Si2H6 was also performed to see the effect of Si on InAs QD. Photoluminescence (PL) and atomic force microscopy (AFM) were used to characterize optical and structural properties of QDs, respectively. It was found that the PL peak positions varied from 0.73 to 0.88 eV with the position of Si doping. PL peak blue shift in modulation doped sample was explained in terms of state filling effect. It was found that Si doping at QD itself was the most effective way to obtain the strongest integrated PL intensity without degrading the QD size distribution.  相似文献   

17.
A kind of novel thermal history nanosensors are theoretically designed and experimentally demonstrated to permanently record thermal events. The photoluminescence (PL) spectrum of core‐shelled quantum dots (QDs) CdSe/ZnS irreversibly shifts with heating histories (temperature and duration) of thermal events. The induced PL shift of the QDs CdSe/ZnS is employed to permanently record thermal histories. We further model a kind of thermal history nanosensor based on the thermal‐induced phenomena of core‐shelled QDs to permanently record thermal histories at microscale and demonstrate to reconstruct temperature and duration of heating events simultaneously from PL spectra of the QDs. The physical mechanism of the sensors is discussed.  相似文献   

18.
Photoluminescence (PL) measurements have been carried out to investigate the annealing effects in one-period and three-periods of InAs/GaAs self-assembled quantum dots (QDs) grown on GaAs substrates by using molecular beam epitaxy. After annealing, the PL spectra for the annealed InAs/GaAs QDs showed dramatic blue shifts and significant linewidth narrowing of the PL peaks compared with the as-grown samples. The variations in the PL peak position and the full width at half-maximum of the PL peak are attributed to changes in the composition of the InAs QDs resulting from the interdiffusion between the InAs QDs and the GaAs barrier and to the size homogeneity of the QDs. These results indicate that the optical properties and the crystal qualities of InAs/GaAs QDs are dramatically changed by thermal treatment.  相似文献   

19.
Photoluminescence (PL) properties of 3-mercaptopropionic acid (MPA) coated CdTe/CdS core-shell quantum dots (QDs) in aqueous solution in the presence of ZnO colloidal nanocrystals were studied by steady-state and time-resolved PL spectroscopy. The PL quenching of CdTe/CdS core-shell QDs with addition of purified ZnO nanocrystals resulted in a decrease in PL lifetime and a small red shift of the PL band. It was found that CdTe(1.5 nm)/CdS type II core-shell QDs exhibited higher efficiency of PL quenching than the CdTe(3.0 nm)/CdS type I core-shell QDs, indicating an electron transfer process from CdTe/CdS core-shell QDs to ZnO nanocrystals. The experimental results indicated that the efficient electron transfer process from CdTe/CdS core-shell QDs to ZnO nanocrystals could be controlled by changing the CdTe core size on the basis of the quantum confinement effect.  相似文献   

20.
丁琪  张晓松  李岚  徐建萍  周平  董晓菲  晏明 《中国物理 B》2017,26(6):67804-067804
Colloidal ZnAgInSe (ZAISe) quantum dots (QDs) with different particle sizes were obtained by accommodating the reaction time. In the previous research, photoluminescence (PL) of ZAISe QDs only could be tuned by changing the composition. In this work the size-tunable photoluminescence was observed successfully. The red shift in the photoluminescence spectra was caused by the quantum confinement effect. The time-resolved photoluminescence indicated that the luminescence mechanisms of the ZAISe QDs were contributed by three recombination processes. Furthermore, the temperature-dependent PL spectra were investigated. We verified the regular change of temperature-dependent PL intensity, peak energy, and the emission linewidth of broadening for ZAISe QDs. According to these fitting data, the activation energy (ΔE) of ZAISe QDs with different nanocrystal sizes was obtained and the stability of luminescence was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号