首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative study of spread and adsorbed monolayer of poly(ethylene oxide)s of different molecular weight hydrophobically modified with alkyl isocyanates of different length chain is reported. The modification of the polymer was carried out according to reported procedures. The polymers obtained were studied at the air-water interface by Langmuir isotherms for spread monolayers and by Gibbs isotherms for the adsorption process. Isotherms obtained are interpreted in terms of the hydrophobic and hydrophilic balance of the polymers. Limiting area per repeating unit (A(0)) and collapse pressure (pi(c)) from spread monolayers were obtained. Spread monolayers of the hydrophobically modified polymers show larger collapse pressure values than unmodified polymer monolayers. In the adsorption process the excess surface concentration Gamma(infinity), area per repeat unit sigma, and efficiency of the adsorption were determined. The values of the area occupied per repeat unit in adsorbed monolayer (sigma) were larger than those of the spread monolayer. The efficiency of the adsorption of poly(ethylene oxide)s increases with the hydrophobic modification and with the alkyl chain length.  相似文献   

2.
In this work we have analyzed the structural and topographical characteristics of mixed monolayers formed by an adsorbed whey protein isolate (WPI) and a spread monoglyceride monolayer (monopalmitin or monoolein) on the previously adsorbed protein film. Measurements of the surface pressure (pi)-area (A) isotherm were obtained at 20 degrees C and at pH 7 for protein-adsorbed films from water in a Wilhelmy-type film balance. Since the surface concentration (1/A) is actually unknown for the adsorbed monolayer, the values were derived by assuming that the A values for adsorbed and spread monolayers were equal at the collapse point of the mixed film. The pi-A isotherm deduced for adsorbed WPI monolayer in this work is practically the same as that obtained directly by spreading. For WPI-monoglyceride mixed films, the pi-A isotherms for adsorbed and spread monolayers at pi higher than the equilibrium surface pressure of WPI are practically coincident, a phenomenon which may be attributed to the protein displacement by the monoglyceride from the interface. At lower surface pressures, WPI and monoglyceride coexist at the interface and the adsorbed and spread pi-A isotherms (i.e., the monolayer structure of the mixed films) are different. Monopalmitin has a higher capacity than monoolein for the displacement of protein from the air-water interface. However, some degree of interactions exists between proteins and monoglycerides and these interactions are higher for adsorbed than for spread films. The topography of the monolayer corroborates these conclusions.  相似文献   

3.
We investigate the surface viscoelasticity of beta-lactoglobulin and beta-casein spread surface monolayers using a recently discovered method. Step compressions are performed, and the surface pressure is measured as a function of time. This is a common experiment for surface monolayers. However in our experiments the pressure is recorded by two perpendicular sensors, parallel and perpendicular to the compression direction. This enables us to clearly measure the time relaxation of both the compression and shear moduli, at the same time, in a single experiment, and with a standard apparatus. beta-Lactoglobulin and beta-casein monolayers are interesting because of their importance in food science and because they exhibit universally slow dynamical behavior that is still not fully understood. Our results confirm that the compressional modulus dominates the total viscoelastic response in both proteins. Indeed for beta-casein we confirm that the shear modulus is always negligible, i.e., the layer is in a fluid state. In beta-lactoglobulin a finite shear modulus emerges above a critical concentration. We emphasize that in Langmuir trough dynamic experiments the surface pressure should be measured in both the compression and the perpendicular directions.  相似文献   

4.
A brief summary of dilational surface viscoelatic properties of spread and adsorbed surfactant polymer films at the air-water interface is reported. The viscoelastic moduli have been measured as a function of frequency and surface pressure. The combination of several techniques, oscillating drop and barrier experiments and electrocapillary waves (ECW), has allowed us to investigate a broad frequency range. The dynamic elasticity epsilon shows a slight change with frequency and a noticeable pressure dependence for both kinds of monolayers. In the spread films, elasticity increases steeply with surface pressure, and reaches a constant value before the polymer begins to dissolve into the bulk. On the other hand, the adsorbed films exhibit a pronounced elasticity maximum, followed by a considerable decay when a loose surface structure is formed. The position of the maximum depends on the polymer chemical composition and molecular weight. The results on the overlapping surface pressure range confirm the dynamic equivalence of spread and adsorbed monolayers. At low surface concentration, the agreement between static and dynamic elasticity is quite satisfactory, but the values diverge considerably at higher surface pressures. The loss modulus omegakappa decreases monotonically with increasing omega, becoming zero (it can even take apparent negative values) for the highest frequencies. The frequency dependence of the elasticity has been well described by the diffusive control model of Lucassen-van den Tempel (LVT). However, its predictions for omegakappa do not coincide with the experimental data. The differences between experimental and theoretical values increase at low frequencies.  相似文献   

5.
This paper reports the surface activity of phytase at the air-water interface, its interaction with lipid monolayers, and the construction of a new phytic acid biosensor on the basis of the Langmuir-Blodgett (LB) technique. Phytase was inserted in the subphase solution of dipalmitoylphosphatidylglycerol (DPPG) Langmuir monolayers, and its incorporation to the air-water interface was monitored with surface pressure measurements. Phytase was able to incorporate into DPPG monolayers even at high surface pressures, ca. 30 mN/m, under controlled ionic strength, pH, and temperature. Mixed Langmuir monolayers of phytase and DPPG were characterized by surface pressure-area and surface potential-area isotherms, and the presence of the enzyme provided an expansion in the monolayers (when compared to the pure lipid at the interface). The enzyme incorporation also led to significant changes in the equilibrium surface compressibility (in-plane elasticity), especially in liquid-expanded and liquid-condensed regions. The dynamic surface elasticity for phytase-containing interfaces was investigated using harmonic oscillation and axisymmetric drop shape analysis. The insertion of the enzyme at DPPG monolayers caused an increase in the dynamic surface elasticity at 30 mN m(-)(1), indicating a strong interaction between the enzyme and lipid molecules at a high-surface packing. Langmuir-Blodgett (LB) films containing 35 layers of mixed phytase-DPPG were characterized by ultraviolet-visible and fluorescence spectroscopy and crystal quartz microbalance nanogravimetry. The ability in detecting phytic acid was studied with voltammetric measurements.  相似文献   

6.
Synthesis, characterization and behavior at the air-water interface of A-B-A triblock copolymers are reported. The copolymers consist of a poly(ethylene oxide) central block and poly(ε-caprolactone) lateral blocks. The synthesis was controlled in order to obtain central and lateral blocks of variable length. Copolymer characterization was performed by FTIR and 1H NMR spectroscopy, size exclusion chromatography (SEC), and thermal analysis. Monolayers of the copolymers at the air-water interface were obtained by the Langmuir technique and the respective isotherms were obtained by monolayer compression. The limiting area per repeat unit (Ao) and the critical exponent of the excluded volume (ν) for spread monolayers were obtained. The static elasticity (ε0) of the monolayers was also determined. The obtained results allow proposing a schematic model of the orientation of the different blocks during the compression of the respective monolayers.  相似文献   

7.
The miscibility and stability of the binary monolayers of zwitterionic dipalmitoylphosphatidylcholine (DPPC) and cationic dioctadecyldimethylammonium bromide (DOMA) at the air-water interface and the interaction of ferritin with the immobilized monolayers have been studied in detail using surface pressure-area isotherms and surface plasmon resonance technique, respectively. The surface pressure-area isotherms indicated that the binary monolayers of DPPC and DOMA at the air-water interface were miscible and more stable than the monolayers of the two individual components. The surface plasmon resonance studies indicated that ferritin binding to the immobilized monolayers was primarily driven by the electrostatic interaction and that the amount of adsorbed protein at saturation was closely related not only to the number of positive charges in the monolayers but also to the pattern of positive charges at a given mole fraction of DOMA. The protein adsorption kinetics was determined by the properties of the monolayers (i.e., the protein-monolayer interaction) and the structure of preadsorbed protein molecules (i.e., the protein-protein interaction).  相似文献   

8.
The dilatational properties, structure, and morphology of the surface films spread at the air–water interface from complex lipid/protein systems were studied by measuring the surface pressure–area and surface potential–area isotherms, the surface rheological properties, and AFM images. The commercially available lung surfactants Alveofact, Curosurf, Survanta, and Exosurf were used as examples.The isotherms of the studied lung surfactant surface films are compared with model lipid and protein monolayers spread from bulk solutions. On the basis of a simple rheological model, the values for the elasticity and the specific time of relaxation related to the reorganization processes occurring in the monolayers were calculated. The spread films of natural surfactants Curosurf and Alveofact show a high effectiveness of spreading and respreading under the conditions of this study. These observations were confirmed by AFM imaging.  相似文献   

9.
The spread or Langmuir monolayer behavior of an ion pair amphiphile (IPA), hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), with a double-tailed cationic surfactant, dihexadecyldimethylammonium bromide (DHDAB), at the air/water interface was analyzed with surface pressure-area isotherms, area relaxation curves, and Brewster angle microscope (BAM) images. The surface pressure-area isotherms showed that with increasing the DHDAB molar ratio, X(DHDAB), spread monolayers of HTMA-DS with DHDAB became rigid. In addition, unreasonably small limiting areas per alkyl chain of the molecules in the monolayers were found, especially at X(DHDAB)=0.5, implying the molecular loss from the monolayers at the interface. For spread HTMA-DS/DHDAB monolayers at the interface, a new IPA, DHDA-DS, was proposed to form through the displacement of HTMA(+) from HTMA-DS by DHDA(+), leaving HTMA(+) dissociated. The formation of DHDA-DS and the desorption of dissociated HTMA(+) upon the interface compression were supported by the results obtained from designed monolayer experiments with BAM observations, and were discussed by considering the hydrophilicity, packing efficiency, and headgroup charge characteristic of the species. Moreover, the area relaxation curves of spread HTMA-DS/DHDAB monolayers suggested that the formation of DHDA-DS was strongly related to the improved monolayer stability at the interface, which may have implications for the DHDAB-enhanced physical stability of catanionic vesicles composed of HTMA-DS.  相似文献   

10.
Proteins adsorbed at fluid/fluid interfaces influence many phenomena: food emulsion and foam stability (Murray et al. Langmuir 2002, 18, 9476 and Borbas et al. Colloids Surf., A 2003, 213, 93), two-phase enzyme catalysis (Cascao-Pereira et al. Biotechnol. Bioeng. 2003, 83, 498; 2002, 78, 595), human lung function (Lunkenheimer et al. Colloids Surf., A 1996, 114, 199; Wustneck et al.; and Banerjee et al. 2000, 15, 14), and cell membrane mechanical properties (Mohandas et al. 1994, 23, 787). Time scales important to these phenomena are broad, necessitating an understanding of the dynamics of biological macromolecules at interfaces. We utilize interfacial shear and dilatational deformations to study the rheology of a globular protein, lysozyme, and a disordered protein, beta-casein, at the hexadecane/water interface. Linear viscoelastic properties are measured using small amplitude oscillatory flow, stress relaxation after a sudden dilatational displacement, and shear creep response to probe the rheological response over broad experimental time scales. Our studies of lysozyme and beta-casein reveal that the interfacial dissipation mechanisms are strongly coupled to changes in the protein structure upon and after adsorption. For beta-casein, the interfacial response is fluidlike in shear deformation and is dominated by interfacial viscous dissipation, particularly at low frequencies. Conversely, the dilatational response of beta-casein is dominated by diffusion dissipation at low frequencies and viscous dissipation at higher frequencies (i.e., when the experimental time scale is faster than the characteristic time for diffusion). For lysozyme in shear deformation, the adsorbed protein layer is primarily elastic with only a weak frequency dependence. Similarly, the interfacial dilatational moduli change very little with frequency. In comparison to beta-casein, the frequency response of lysozyme does not change substantially after washing the protein from the bulk solution. Apparently, it is the irreversibly adsorbed fraction that dominates the dynamic rheological response for lysozyme. Using stress relaxation after a sudden dilatational displacement and shear creep response, the characteristic time of relaxation was found to be 1000 s in both modes of deformation. The very long relaxation time for lysozyme likely results from the formation of a glassy interfacial network. This network develops at high interfacial concentrations where the molecules are highly constrained because of conformation changes that prevent desorption.  相似文献   

11.
Nine polyisobutylene (PIB) samples, consisting of three chain architectures (linear and branched), each of three molecular weights, were each derivatised at one, two or three chain ends with a hydrophilic head group based on diethyl azodicarboxylate. The surface pressure–area isotherms for spread monolayers of these polymers at the air/water interface were determined using a Langmuir trough, and the thicknesses of the films determined by ellipsometry. The isotherms showed that the area per molecule increased, whereas the collapse pressure decreased, with increasing molecular weight. The area per molecule and collapse pressures both increased with functionality, suggesting that the PIBs adsorb with all of the head groups at the interface. This was confirmed by the ellipsometry data which showed that the film thickness decreased with increasing functionality for similar molecular weight PIBs. Compared to other head groups which have been used to functionalise PIB, the azo head group has a much weaker affinity for water, leading to higher collapse areas and lower collapse pressures.  相似文献   

12.
The thermodynamics of adsorption of amphiphilic surface-active compounds at the interface between two immiscible liquids is considered. At the interface, these molecules are supposed to replace a few of the adsorbed molecules of both solvents. Classical isotherms of adsorption (Frumkin, Langmuir, Henry) were based on the model of nonpenetrable interface, where an adsorbate can substitute only molecules of one solvent. However, at the interface between two immiscible electrolytes, like nonpolar oil-water interfaces, or liquid membrane amphiphilic molecules can substitute molecules of both solvents; therefore, classical isotherms are not applicable in these cases. The generalization of Langmuir and Frumkin isotherms for permeable and nonpermeable interfaces, known as the Markin-Volkov (MV) isotherm, gives the possibility to analyze adsorption and the interfacial structure in a general case. In the present paper, the adsorption isotherms of pentafluorobenzoic acid at the octane-water interface at various pH were measured by the drop-weight method. The thermodynamic parameters of pentafluorobenzoic acid (PFBA) adsorption at the octane-water interface were found. From the measurements of PFBA adsorption, the structure of the octane-water interface was determined. Substitution of one adsorbed octane molecule requires approximately three adsorbed PFBA molecules. This result shows that the orientation of solvent molecules at the interface is different from the bulk solution. Adsorbed octane molecules have a lateral orientation with respect to the interface. Gibbs free energy of adsorption equilibrium and thermodynamic parameters of PFBA adsorption show that the adsorption of PFBA at the octane-water interface is accompanied by a reduction in the attraction between adsorbed PFBA molecules as the pH decreases to the acidic region.  相似文献   

13.
The dilatational rheological properties of monolayers of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)-type block copolymers at the air-water interface have been investigated by employing an oscillating ring trough method. The properties of adsorbed monolayers were compared to spread layers over a range of surface concentrations. The studied polymers were PEO26-PPO39-PEO26 (P85), PEO103-PPO40-PEO103 (F88), and PEO99-PPO65-PEO99 (F127). Thus, two of the polymers have similar PPO block size and two of them have similar PEO block size, which allows us to draw conclusions about the relationship between molecular structure and surface dilatational rheology. The dilatational properties of adsorbed monolayers were investigated as a function of time and bulk solution concentration. The time dependence was found to be rather complex, reflecting structural changes in the layer. When the dilatational modulus measured at different concentrations was replotted as a function of surface pressure, one unique master curve was obtained for each polymer. It was found that the dilatational behavior of spread (Langmuir) and adsorbed (Gibbs) monolayers of the same polymer is close to identical up to surface concentrations of approximately 0.7 mg/m2. At higher coverage, the properties are qualitatively alike with respect to dilatational modulus, although some differences are noticeable. Relaxation processes take place mainly within the interfacial layers by a redistribution of polymer segments. Several conformational transitions were shown to occur as the area per molecule decreased. PEO desorbs significantly from the interface at segmental areas below 20 A(2), while at higher surface coverage, we propose that segments of PPO are forced to leave the interface to form a mixed sublayer in the aqueous region.  相似文献   

14.
In this contribution we are concerned with the study of structure, topography, and surface rheological characteristics under shear conditions of monoglyceride (monopalmitin and monoolein) and milk protein (beta-casein, kappa-casein, caseinate, and WPI) spread monolayers at the air-water interface. Combined surface chemistry (surface film balance and surface shear rheometry) and microscopy (Brewster angle microscopy: BAM) techniques have been applied in this study to pure emulsifiers (proteins and monoglycerides) spread at the air-water interface. To study the shear characteristics of spread films, a homemade canal viscometer was used. The experiments have demonstrated the sensitivity of the surface shear viscosity (eta(s)) of protein and monoglyceride films at the air-water interface, as a function of surface pressure (or surface density). The surface shear viscosity was higher for proteins than for monoglycerides. In addition, eta(s) was higher for the globular WPI than for disordered beta-casein and caseinate due to the strong forces acting on spread globular proteins. This technique makes it possible to distinguish between beta-casein and caseinate spread films, with the higher eta(s) values for the later due to the presence of kappa-casein. The eta(s) value varies greatly with the surface pressure (or surface density). In general, the greater the surface pressure, the greater the values of eta(s). Finally, the eta(s) value is also sensitive to the monolayer structure, as was observed for monoglycerides with a rich structural polymorphism (i.e., monopalmitin).  相似文献   

15.
The Langmuir film balance technique was used to determine the hydrolytic kinetics of monolayers of the stereocomplex formed from mixtures of enantiomeric polylactides, poly(L-lactide) (L-PLA) and poly(D-lactide) (D-PLA), spread at the air-water interface. The present study investigated parameters such as degradation medium, mixture composition, and time on the relative degradation rate. The pi-A isotherms of monolayers of the mixtures provide clear evidence for the presence of a stereocomplex; the isotherms of monolayers of individual polyenantiomer show a transition at about 8.5 mN/m, whereas the transition of monolayers containing a stereocomplex formed from the equimolar mixture shifted to higher surface pressure, about 11 mN/ m. The rate of hydrolysis was recorded by a change in occupied area when the monolayer is maintained at a constant surface pressure. The hydrolysis of the mixture monolayers under basic conditions was slower than that of individual polyenantiomer monolayers, depending on the composition or the degree of complexation. In the presence of proteinase K, the enzymatic hydrolysis rate of mixture monolayers with >50 mol % l-PLA was much slower than that of the single-component L-PLA monolayer. The monolayers formed from mixtures with < or =50 mol % L-PLA did not show any change of occupied areas. This result is explained by the inactivity of D-PLA and stereocomplexed chains to the enzyme. From both results, it can be concluded that the retardation of the hydrolysis of mixture monolayers is mainly due to a strong interaction between D- and L-lactide unit sequences, which prevents the penetration of water or enzyme into the bulk.  相似文献   

16.
The interfacial behavior differences of two glutathione peroxidase isoforms have been investigated. The first isoform is the phospholipid-hydroperoxide glutathione peroxidase (EC 1.11.1.12) (GPx-4) isolated from rat testes and the second one is the cytosolic glutathione peroxidase (EC 1.11.1.9) (GPx-1) from bovine erythrocytes. Injected in the subphase buffer of a Langmuir trough, GPx-4 was able to adsorb quickly at the air-water interface whereas the GPx-1 was not. Then, the protein interaction with phospholipid monolayers was explored. Indeed, a monolayer of phospholipids containing a different number of polyunsaturated fatty acyl chains was prepared at the air-water interface. Under each kind of monolayer, the protein solution was injected and its adsorption was visualized by the measurement of successive pressure-area isotherms. We have, then, determined the molecular area increase due to the protein adsorption. It was found that the GPx-4 is adsorbed in each kind of monolayer tested whereas no molecular area increase was detected with the GPx-1. This indicates that the GPx-4 has a higher affinity for the interface, recovered or not by lipids, than the GPx-1. Moreover, the GPx-4 presents a different affinity for the phospholipid monolayers depending on the number of polyunsaturated fatty acyl chains.  相似文献   

17.
A capillary wave technique was used to study the viscoelastic properties of floating polyelectrolyte multilayers of (PSS/PAH)(n) at the air-water interface. Oppositely charged polyelectrolyte layers were adsorbed onto two different Langmuir monolayers, either the lipid dimethyldioctadecylammonium bromide (DODAB) or the block copolymer poly(styrene-b-sodium acrylate) (PS-b-PAA). The results allow to propose a schematic representation of the multilayers in three zones: Zone I as a precursor, representing the adhesion between the Langmuir monolayer and the bulk polyelectrolyte multilayer. Zone II forms a bulk or core zone of the multilayer. Zone III as an outer zone in direct contact with the aqueous phase. The results show an increase of the elasticity after the formation of four polyelectrolyte layers accompanied by an apparent negative viscosity. This behaviour was interpreted as a translation of elasticity dominance from zone I to zone II. The Young modulus of seven layers was in the same order of magnitude as observed for planar polyelectrolyte multilayer films.  相似文献   

18.
A trisilanol polyhedral oligomeric silsesquioxane (POSS), trisilanolcyclohexyl-POSS (TCyP), has recently been reported to undergo a series of phase transitions from traditional Langmuir monolayers to unique rodlike hydrophobic aggregates in multilayer films that are different from "collapsed" morphologies seen in other systems at the air/water interface. This paper focuses on the phase transitions and morphology of films varying in average thickness from monolayers to trilayers and the corresponding viscoelastic properties of trisilanolcyclohexyl-POSS molecules at the air/water interface by means of surface pressure-area per molecule (Pi-A) isotherms, Brewster angle microscopy (BAM), and interfacial stress rheometry (ISR) measurements. The morphology studies by BAM reveal that the TCyP monolayer can collapse into different 3D structures by homogeneous or heterogeneous nucleation mechanisms. For homogeneous nucleation, analysis by Vollhardt et al.'s nucleation and growth model reveals that TCyP collapse is consistent with instantaneous nucleation with hemispherical edge growth at Pi = 3.7 mN.m(-1). Both surface storage (Gs') and loss (Gs") moduli obtained by ISR reveal three different non-Newtonian flow regimes that correlate with phase transitions in the Pi-A isotherms: (A) A viscous liquidlike "monolayer"; (B) a "biphasic regime"between a liquidlike viscous monolayer and a more rigid trilayer; and (C) an elastic solidlike "trilayer". These observations provide interesting insights into collapse mechanisms and structures in Langmuir films.  相似文献   

19.
The ability of proteins to provide stability in foams is greatly influenced by their interfacial dilatational rheological properties. Surface tension response of a pulsatingbubble with an adsorbed layer of beta-lactoglobulin was measured for different frequencies and protein concentrations using a pulsating bubble tensiometer. A methodology, accounting for adsorption/desorption as well as variation of surface concentration due to expansion/contraction, was developed for the evaluation of surface dilatational elasticity and viscosity at different frequencies from these measurements. The adsorption rate constants were inferred from the surface pressure dynamics of protein adsorption using a Langmuir minitrough. The desorption rates were shown to be negligible for beta-lactoglobulin from the surface pressure response of a spread monolayer when subjected to compression in a Langmuir minitrough. The proposed model was employed to infer the interfacial dilatational viscosity and elasticity of an adsorbed beta-lactoglobulin layer at the air-water interface from experimental pulsating bubble data for protein concentrations in the range of 0.01-0.5 wt % at pH 7. As expected, the interfacial dilatational rheological properties were found to be higher at higher protein concentrations, this effect being less pronounced for dilatational elasticity. Heating at 80 degrees C for 30 min was found to result in higher interfacial dilatational viscosity and lower interfacial dilatational elasticity though this difference was within experimental error. The traditional approach for the inference of interfacial dilatational rheological properties is found to overpredict the interfacial dilatational elasticity whereas the viscosity values do not differ significantly from those obtained using the current analysis.  相似文献   

20.
Dynamic interfacial tensions and surface dilational moduli were measured for four proteins at three fluid interfaces, as a function of time and concentration. The proteins-beta-casein, beta-lactoglobulin, bovine serum albumin, and ovalbumin-were adsorbed from aqueous solution against air, n-tetradecane, and a triacylglycerol oil. The sinusoidal interfacial compression/expansion, at frequencies ranging from 0.005 to 0.5 Hz, was effected in a dynamic drop tensiometer suited to viscous oil phases. Generally, at interfacial pressures up to 15 mN/m, dilational moduli were purely elastic at frequencies from 0.1 Hz. In this elastic range, in-surface relaxation either was essentially completed or had not yet started within a time on the order of 10 s. Within this time span, protein exchange with the bulk solution was negligible. In cases where in-surface relaxation was completed in the imposed time, the moduli depended only on the equilibrium Pi(Gamma) relationship. We interpret these results in terms of a simple two-dimensional solution model, based on a Gibbs dividing surface, accounting for nonideal mixing to the first order with respect to both entropy and enthalpy. Interfacial mixing enthalpy is shown to have a major effect on the elasticity, with both quantities increasing in the sequence triacylglycerol < tetradecane < air. We also suggest a strong correlation between enthalpy and clean-interface tension that increases in the same order. At each interface, the enthalpy increases with increasing molecular rigidity: beta-casein < beta-lactoglobulin < bovine serum albumin < ovalbumin. Best agreement with the experimental data was obtained with a recently extended version of the model accounting for proteins adopting smaller molecular areas with increasing surface pressure. For interfacial pressures above 15 mN/m, the moduli were generally no longer purely elastic, with viscous loss angles ranging up to 36 degrees. In this range of high pressures, the moduli depended on relaxation mechanisms for which specific kinetic models must be developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号