首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-ethylcarbazole/dodecahydro-N-ethylcarbazole (NEC/12H-NEC) is one of the most attractive LOHCs, and it is of great significance to develop catalysts with high activity and reduce the hydrogen storage temperature. Layered double hydroxides-carbon nanotubes composites (LDH-CNT) were synthesized by a simple in-situ assembly method. Due to the introduction of CNT, a strong interaction occurred between LDH and CNT, which effectively improved the electron transfer ability of LDH-CNT. Ru/LDH-CNT catalysts were prepared via ultrasound-assisted reduction method without adding reducing agents and stabilizers. Under the cavitation effect of ultrasound, the hydroxyl groups on the surface of LDH were excited to generate hydrogen radicals (•H) with high reducibility, which successfully reduced Ru3+ to Ru NPs. Ru/LDH-3.9CNT-(300-1) catalyst was of 1.63 nm average Ru particle size with CNT amount of 3.9 wt% and the ultrasonic power of 300 W at 1 h, and its electron transfer resistance was less than that of Ru/LDH-(300-1). The synergy of ultrafine Ru NPs and fast electron transfer made it exhibit exceptional catalytic performance in NEC hydrogenation. Even if the reaction temperature was lowered to 80 °C, its hydrogenation performance was better than that of commercial Ru/Al2O3 catalyst at 120 °C. The ultrasound-assisted method is efficient, green and environmentally friendly, and the operation process is simple and economical. It is expected to be used in practical industrial production, which provides a reference for the preparation of high-activity and low-temperature hydrogen storage catalysts.  相似文献   

2.
Sequentially precipitated Mg-promoted nickel-silica catalysts with ageing performed under various ultrasonic intensities were employed to study the catalyst performance in the partial hydrogenation of sunflower oil. Results from various characterisation studies showed that increasing ultrasonic intensity caused a higher degree of hydroxycarbonate erosion and suppressed the formation of Ni silicates and silica support, which improved Ni dispersion, BET surface area and catalyst reducibility. Growth of silica clusters on the catalyst aggregates were observed in the absence of ultrasonication, which explained the higher silica and nickel silicate content on the outer surface of the catalyst particle. Application of ultrasound also altered the electron density of the Ni species, which led to higher activity and enhanced product selectivity for sonicated catalysts. The catalyst synthesised with ultrasonic intensity of 20.78 Wcm−2 achieved 22.6% increase in hydrogenation activity, along with 28.5% decrease in trans-C18:1 yield at IV = 70, thus supporting the feasibility of such technique.  相似文献   

3.
In this paper, preparing copper catalyst by ultrasound-assisted chemical precipitation method is investigated. The used equipment is JP-020 ultrasonic cleaner, power and frequency are 180 W and 40 kHz respectively. Under the action of ultrasound, CuSO4·5H2O is reduced by ascorbic acid to obtain copper. The products are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and catalytic performance test. The results show that the morphology of copper products is rod-like and irregular granular. Copper catalyst has good catalytic oxidation performance for dyes methylene blue, crystal violet, alizarin red and Rhodamine B. The catalytic efficiency of 10 mg catalyst copper to 6 mg/L methylene blue reaches 98.1%, and the catalytic efficiency of the catalyst increases with the increase of catalyst dosage and the decrease of dye solution concentration. In addition, the new preparation techniques for Cu-based catalysts based on coprecipitation method are compared. Finally, the development trend of the new technology of copper-based catalyst preparation based on coprecipitation method is pointed out.  相似文献   

4.
A new heterogeneous sonocatalytic system consisting of a MoO3/Al2O3 catalyst and H2O2 combined with ultrasonication was studied to improve and accelerate the oxidation of model sulfur compounds of diesel, resulting in a significant enhancement in the process efficiency. The influence of ultrasound on properties, activity and stability of the catalyst was studied in detail by means of GC-FID, PSD, SEM and BET techniques. Above 98% conversion of DBT in model diesel containing 1000 μg/g sulfur was obtained by new ultrasound-assisted desulfurization at H2O2/sulfur molar ratio of 3, temperature of 318 K and catalyst dosage of 30 g/L after 30 min reaction, contrary to the 55% conversion obtained during the silent process. This improvement was considerably affected by operation parameters and catalyst properties. The effects of main process variables were investigated using response surface methodology in silent process compared to ultrasonication. Ultrasound provided a good dispersion of catalyst and oxidant by breakage of hydrogen bonding and deagglomeration of them in the oil phase. Deposition of impurities on the catalyst surface caused a quick deactivation in silent experiments resulting only 5% of DBT oxidation after 6 cycles of silent reaction by recycled catalyst. Above 95% of DBT was oxidized after 6 ultrasound-assisted cycles showing a great improvement in stability by cleaning the surface during ultrasonication. A considerable particle size reduction was also observed after 3 h sonication that could provide more dispersion of catalyst in model fuel.  相似文献   

5.
《Solid State Ionics》2006,177(19-25):2065-2069
Novel Ni–Al2O3 cermet-supported tubular SOFC cell was fabricated by thermal spraying. Flame-sprayed Al2O3–Ni cermet coating played dual roles of a support tube and an anode current collector. Y2O3-stabilized ZrO2 (YSZ) electrolyte was deposited by atmospheric plasma spraying (APS) to aim at reducing manufacturing cost. The gas tightness of APS YSZ coating was achieved by post-densification process. The influence of YSZ coating thickness on the performance of SOFC test cell was investigated in order to optimize YSZ thickness in terms of open circuit voltage of the cell and YSZ ohmic loss. It was found that the reduction of YSZ thickness from 100 μm to 40 μm led to the increase of the maximum output power density from 0.47 W/cm2 to 0.76 W/cm2 at 1000 °C. Using an APS 4.5YSZ coating of about 40 μm as the electrolyte, the test cell presented a maximum power output density of over 0.88 W/cm2 at 1030 °C. The results indicate that SOFCs with thin YSZ electrolyte require more effective cathode and anode to improve performance.  相似文献   

6.
The catalytic performance of nanostructured Ni-Co/Al2O3-ZrO2 catalysts, prepared by ultrasound-assisted impregnation method was examined in the dry reforming of methane. The effect of irradiation power and irradiation time have been studied by changing time (0, 20, 80 min) and power of the sonication (30, 60, 90 W) during the synthesis which resulted in different physiochemical properties of the nanocatalyst. The nanocatalysts were characterized by XRD, FESEM, PSD, EDX, TEM, TPR-H2, BET, FTIR and TG analyses. Based on the characterization results, ultrasound treatment endowed the sample with more uniform and smaller nanoparticles; higher surface area, stronger metal-support interaction and more homogenous dispersion. Moreover, the analyses exhibited smaller particles with higher surface area and less population of particle aggregates at longer and highly irradiated nanocatalysts. The nanocatalyst irradiated at 90 W for 80 min (the longest irradiation time and the most intense power) showed a uniform morphology and a very narrow particles size distribution. More than 65% of particles of this nanocatalyst were in the range of 10–30 nm. Activity tests demonstrated that employing ultrasound irradiation during impregnation improves feed conversion and products yield, reaching values close to equilibrium. Among sonicated nanocatalysts, with increasing power and time of irradiation, the nanocatalyst represents higher activity. The superior performance amongst the various bimetallic catalysts tested was observed over the catalyst with 90 W and 80 min ultrasonic irradiation which is stable in 24 h time on stream test. The excellent anti-coking performance of this bimetallic catalyst, confirmed by TG and FESEM analyses of spent catalyst, is closely related to the promoting effect of sonication on the metal-support interaction, Ni dispersion and particle size; and probably, the synergy between metallic species.  相似文献   

7.
The effect of Non-Faradaic Electrochemical Modification of Catalytic Activity, orin-situ controlled promotion, was investigated during Acetylene selective hydrogenation on Pd films deposited on β″ - Al2O3, a Na+ conductor, at temperatures from 60 to 100 °C and GHSVs from 103 to 104 h-−1, i.e., under conditions similar to those used in industrial processes. It was found that both acetylene conversion and hydrogenation selectivity can be affected by means of externally applied potentials, i.e., by supplying or removing sodium ions to or from the catalyst surface. Electrochemical sodium supply to the Pd catalyst surfaċe was found to supress both the rate of acetylene hydrogenation and, to a larger extent the rate of ethylene hydrogenation to ethane. Consequently electrochemical sodium supply was found to enhance the selectivity to ethylene. Thus, β″ - Al2O3 can act as an active catalyst support causing enhanced performance of the Pd catalyst. Acetylene conversion and hydrogenation selectivity values up to 90 % and 95 %, respectively, were obtained. Paper presented at the 5th Euroconference on Solid State Ionics, Benalmádena, Spain, Sept. 13–20, 1998.  相似文献   

8.
Yeast β-glucan (YG) possess an extensive range of biological activities, such as the inhibition of oxidation, but the poor water solubility of macromolecular YG limits its application. In this study, through the combined degradation of ultrasonic waves and H2O2, and the optimization of the main process parameters for solubilizing YG by response surface methodology (RSM), a new product of YGUH was generated. The molecular weight, structural characteristics and degradation kinetics before and after solubilization were evaluated. The results showed that the optimal solubilization conditions were reaction time: 4 h, ultrasonic power: 3 W/mL, H2O2 concentration: 24 %. Under these conditions, ultrasound-assisted H2O2 increased the solubility (from 13.60 % to 70.00 %) and reduced molecular weight (from 6.73 × 106 Da to 1.22 × 106 Da). Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), Congo red (CR), scanning electron microscopy (SEM) revealed that ultrasound-assisted H2O2 increased the conformation's flexibility greatly, without changing the main structure of YG. More importantly, solubilization of YG improved free radical scavenging activity with YGUH exhibiting the highest levels of DPPH and ABTS+ free radical scavenging activity. These results revealed that ultrasound-assisted H2O2 degradation could be a suitable way to increase the solubility of YG for producing value-added YG.  相似文献   

9.
In this study, we investigated the fabrication of supersaturated gallium (Ga)–aluminum (Al) liquid alloy and Al3+-doped γ-Ga2O3 nanoparticles (NPs) at near room temperature (60 °C) using sonochemical and sonophysical effects. Supersaturated Ga–Al liquid alloy microparticles (Dav = 1.72 µm) were formed and stabilized at 60 °C by the thermal nonequilibrium field provided by sonochemical hot spots. Compared with liquid Ga, supersaturated Ga–Al liquid alloy was rapidly oxidized to a uniform oxide without Al2O3 or Al deposition. Thus, ultrafine Al3+-doped γ-Ga2O3 NPs were obtained after only 1 h of ultrasonic irradiation at 60 °C. The oxidation of liquid Ga was remarkably accelerated by alloying with metallic Al and ultrasonic irradiation, and the time was shortened. The average diameter and surface area of the γ-Ga2O3-based NPs were 59 nm and 181 m2/g, respectively. Compared with γ-Ga2O3, the optical bandgap of the Al3+-doped γ-Ga2O3 NPs was broadened, and the thermal stability improved, indicating Al3+-doping into the γ-Ga2O3 lattice. However, the lattice constant of γ-Ga2O3 was almost unchanged with or without Al3+-doping. Al3+ was introduced into the defect sites of Ga3+, which were massively induced in the defective spinel structure during ultrasonic processing. Therefore, sonochemical processing, which provides nonequilibrium reaction fields, is suitable for the synthesis of supersaturated and metastable materials in metals and ceramics fields.  相似文献   

10.
It was studied the effect of ultrasonic processing (22 kHz) of the aqueous suspension of metakaolin, sodium hydroxide and alumina with a molar ratio 2Al2Si2O7:12NaOH:2Al2O3 on the low-modulus zeolite synthesis processes. To investigate the XRD, SEM, IR, EDS had been used. It was shown that after ultrasonic processing, sodium aluminates are formed, what leads to a change in process of further synthesis. It was found that without ultrasonic processing on the stage of thermal treatment at 650 °C, SOD zeolite (|Na6|[Al6Si6O24]) and sodium aluminosilicate (Na6Al4Si4O17) are synthesized. In the sample after ultrasound during thermal treatment, only sodium aluminosilicates of cubic syngony (Na6Al4Si4O17 and Na8Al4Si4O18) are formed. It was demonstrated that sodium aluminosilicates are precursors for the formation of LTA zeolite (|Na12|[Al12Si12O48]). As a result zeolitization of sodium aluminosilicates after the hydrothermal crystallization in alkaline solution, the sonicated sample contained 97 wt% LTA. Without ultrasonic processing, the product of synthesis contained 50 wt% SOD and 40 wt% LTA.  相似文献   

11.
(5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) powder, as a high effective sonocatalyst, was prepared using sol-gel and calcination method. Then it was characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). In order to evaluate the sonocatalytic activity of the prepared (5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) powder, the sonocatalytic decomposition of ametryn was studied. In addition, some influencing factors such as different Ti/Ta molar ratios on the sonocatalytic activity of the prepared (5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) powder, catalyst added amount with ultrasonic irradiation time and used times on the sonocatalytic decomposition efficiency were examined by using ion chromatogram determination. The experimental results showed that the best sonocatalytic decomposition ratio of ametryn were 77.50% based on the N atom calculation and 95.00% based on the S atom calculation, respectively, when the conditions of 10.00 mg/L initial concentration, 1.00 g/L prepared (5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) powder (Ti/Ta = 1.00:0.25 heat-treated at 550 °C for 3.0 h) added amount, 150 min ultrasonic irradiation (40 kHz frequency and 300 W output power), 100 mL total volume and 25–28 °C temperature were adopted. Therefore, the (5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) composite nanoparticles could be considered as an effective sonocatalyst for decomposition of ametryn in aqueous solution.  相似文献   

12.
Three series of catalysts, Ni/Al2O3-SiO2, Ni/Al2O3-Cr2O3 and Ni/SiO2-Cr2O3, were prepared by co-precipitation. In all samples the nickel content was kept constant at 70 at.% Ni, while the support composition was varied. The nickel surface areas, which are required to measure the specific catalytic activities, were determined by hydrogen chemisorption. In the case of the single oxide supported nickel catalysts, the order of the specific catalytic activity values was: Ni/Cr2O3<Ni/Al2O3<Ni/SiO2. The specific catalytic activity of the Ni/Al2O3-SiO2 samples, as a function of the support composition, follows approximately the weighted sum of the specific activities of the single oxide supported nickel catalysts. The specific catalytic activity value of the Ni/Al2O3-Cr2O3 and Ni/SiO2-Cr2O3 samples more closely resembled that of Ni/Cr2O3 catalyst. The presence on chromia surface of the chromic anhydride and its tendency to spread onto are supposed to be the cause of this behaviour. Due to their enhanced activity, the Ni/Al2O3-Cr2O3 catalysts can be used for the production and detritiation of heavy water.  相似文献   

13.
Present work deals with the ultrasound-assisted biodiesel production from low cost, substantial acid value kusum (Schleichera triguga) oil using a two-step method of esterification in presence of acid (H2SO4) catalyst followed by transesterification using a basic heterogeneous barium hydroxide (Ba(OH)2) catalyst. The initial acid value of kusum oil was reduced from 21.65 to 0.84 mg of KOH/g of oil, by acid catalyzed esterification with 4:1 methanol to oil molar ratio, catalyst concentration 1% (v/v), ultrasonic irradiation time 20 min at 40 °C. Then, Ba(OH)2 concentration of 3% (w/w), methanol to oil molar ratio of 9:1, ultrasonic irradiation time of 80 min, and temperature of 50 °C was found to be the optimum conditions for transesterification step and triglyceride conversion of 96.8% (wt) was achieved. This paper also examined the kinetics as well as the evaluation of thermodynamic parameters for both esterification and transesterification reactions. The lower value of activation energy and higher values of kinetic constants indicated a fast rate of reaction, which could be attributed to the physical effect of emulsification, in which the microturbulence generated due to radial motion of bubbles, creates an intimate mixing of the immiscible reactants causing the increase in the interfacial area, giving faster reaction kinetics. The positive values of Gibbs-free energy (ΔG), enthalpy (ΔH) and negative value of entropy (ΔS) revealed that both the esterification and transesterification were non-spontaneous, endothermic and endergonic reactions. Therefore, the present work has not only established the escalation obtained due to ultrasonication but also exemplified the two-step approach for synthesis of biodiesel from non-edible kusum oil based on the use of heterogeneous catalyst for the transesterification step.  相似文献   

14.
The effects of transition metals (Cr, Mn, Fe, Co and Ni) on the catalytic properties of Pd/Ce-Zr/Al2O3 catalyst for methane combustion have been investigated. The supported Pd catalysts are characterized by BET, XRD, TEM, TPR, TPO and TPSR measurements. Activity tests in methane combustion show that Pd/Ce-Zr-Ni/Al2O3 has the highest catalytic activity and thermal stability among all catalysts. The results of TEM show that the addition of Ni to Pd/Ce-Zr/Al2O3 increases the dispersion of Pd component and inhibits the site growth. The results of TPO and TPSR show that the addition of Ni inhibits the decomposition of PdO particles and improves the reduction-reoxidation properties of the active PdO species, which increases the catalytic activity and thermal stability of the Pd/Ce-Zr/Al2O3 catalyst.  相似文献   

15.
《Solid State Ionics》2006,177(7-8):803-811
The purpose of this study was to synthesize highly dispersed Ni/Al2O3 catalysts and to develop a suitable hydrogen-temperature programmed desorption (H2-TPD) method for the determination of nickel metal surface area, dispersion, and crystallite sizes. Several highly dispersed Ni/Al2O3 catalysts with a Ni loading between 15 and 25 wt.% were synthesized. The reducibility of catalysts was determined by temperature programmed reduction (TPR) experiments. All catalysts exhibited a single reduction peak with a maximum rate of H2 consumption (Tmax in TPR) occurring below 450 °C. Three different H2-TPD methods were employed to determine the amount of H2 chemisorbed. In TPD-1, a 10% H2/Ar mixture was used for catalyst pre-reduction and surface saturation by cooling down from Tmax in TPR to room temperature. In TPD-2, the catalyst surface after pre-reduction was flushed with Ar at Tmax in TPR + 10 °C. The TPD-3 was similar to the TPD-2, but used 100% H2 instead of 10% H2/Ar mixture. In all three TPD methods, the profiles exhibited 2 domains of H2 desorption peaks, one below 450 °C, referred to as type-1 peaks, and attributed to H2 desorbed from exposed fraction of Ni atoms, and the other above 450 °C, denoted as type-2 peaks, and assigned to the desorption of H2 located in the subsurface layers and/or to spillover H2. Flushing the reduced catalyst surface in Ar at Tmax in TPR + 10 °C in TPD-2 and TPD-3 removed most of the H2 located in the subsurface layers/ spillover H2. The amount of H2 chemisorbed to form a monolayer on the reduced Ni/Al2O3 catalysts was determined quantitatively from the TPD peak areas of type-1 peaks in TPD-1, and from both type-1 and type-2 peaks in TPD-2 and TPD-3. The Ni metal surface area, dispersions and crystallite sizes were calculated from the chemisorption data and the values were compared with those obtained using the static chemisorption method. Both TPD-2 and TPD-3 gave chemisorption results similar to that obtained from the static method.  相似文献   

16.
Advanced oxidation processes can potentially eliminate organic contaminants from industrial waste streams as well as persistent pharmaceutical components in drinking water. We explore for the first time the utilization of Cavitation Intensifying Bags (CIB) in combination with Pd/Al2O3 catalyst as possible advanced oxidation technology for wastewater streams, oxidizing terephthalic acid (TA) to 2-hydroxyterephthalic acid (HTA). The detailed characterization of this novel reaction system reveals that, during sonication, the presence of surface pits of the CIB improves the reproducibility and thus the control of the sonication process, when compared to oxidation in non-pitted bags. Detailed reaction kinetics shows that in the CIB reactor the reaction order to TA is zero, which is attributed to the large excess of TA in the system. The rate of HTA formation increased ten-fold from ~0.01 μM*min−1 during sonication in the CIB, to ~0.10 μM*min−1 for CIB in the presence of the Pd/Al2O3 catalyst. This enhancement was ascribed to a combination of improved mass transport, the creation of thermal gradients, and Pd/Al2O3 catalyst near the cavitating bubbles. Further analysis of the kinetics of HTA formation on Pd/Al2O3 indicated that initially the reaction underwent through an induction period of 20 min, where the HTA concentration was ~0.3 μM. After this, the reaction rate increased reaching HTA concentrations ~6 μM after 40 min. This behavior resembled that observed during oxidation of hydrocarbons on metal catalysts, where the slow rate formation of hydroperoxides on the metal surface is followed by rapid product formation upon reaching a critical concentration. Finally, a global analysis using the Intensification Factor (IF) reveals that CIB in combination with the Pd/Al2O3 catalyst is a desirable option for the oxidation of TA when considering increased oxidation rates and costs.  相似文献   

17.
In this work, ultrasound-assisted oxidative desulfurization (UAOD) of liquid fuels performed with a novel heterogeneous highly dispersed Keggin-type phosphotungstic acid (H3PW12O40, PTA) catalyst that encapsulated into an amino-functionalized MOF (TMU-17-NH2). The prepared composite exhibits high catalytic activity and reusability in oxidative desulfurization of model fuel. Ultrasound-assisted oxidative desulfurization (UAOD) is a new way to performed oxidation reaction of sulfur-contain compounds rapidly, economically, environment-friendly and safely, under mild conditions. Ultrasound waves can be apply as an efficient tool to decrease the reaction time and improves oxidative desulfurization system performance. PTA@TMU-17-NH2 could be completely performed desulfurization of the model oil by 20 mg of catalyst, O/S molar ratio of 1:1 in presence of MeCN as extraction solvent. The obtained results indicated that the conversions of DBT to DBTO2 achieve 98% after 15 min in ambient temperature. In this work, we prepared TMU-17-NH2 and PTA/TMU-17-NH2 composite by ultrasound irradiation for first time and employed in UAOD process. Prepared catalyst exhibit an excellent reusability without PTA leaching and loss of activity.  相似文献   

18.
Recently, surface modifications on a commercial Ni/γ-Al2O3 catalyst during the production of methane from synthesis gas were investigated by quasi insitu X-ray photoelectron spectroscopy (XPS) [I. Czekaj, F. Loviat, F. Raimondi, J. Wambach, S. Biollaz, A. Wokaun, Appl. Catal. A: Gen. 329 (2007) 68]. The conclusion was that the reactivity and the observed reaction mechanisms on the different Ni particles are influenced directly by both the size and the composition of the particles on the γ-Al2O3 support.In this investigation, Ni deposition and cluster growth on model catalyst samples (10 nm thick, polycrystalline γ-Al2O3 on Si(100)) were investigated by XPS. Several steps in the binding energy during Ni deposition indicate changes in the cluster growth. The molecular structure of the catalyst was investigated using Density Functional Theory calculations (StoBe) with a cluster model and non-local functional (RPBE) approach. An Al15O40H35 cluster was selected to represent the γ-Al2O3(100) surface. Ni clusters of different size were cut from a Ni(100) surface and deposited on the Al15O40H35 cluster in order to validate the deposition model determined by XPS.  相似文献   

19.
《Ultrasonics sonochemistry》2014,21(5):1752-1762
The aim of this study is to investigate modified TiO2 doped with C4H4O6HK as heterogeneous solid base catalyst for transesterification of non-edible, Silybum marianum oil to biodiesel using methanol under ultrasonication. Upon screening the catalytic performance of modified TiO2 doped with different K-compounds, 0.7 C4H4O6HK doped on TiO2 was selected. The preparation of the catalyst was done using incipient wetness impregnation method. Having doped modified TiO2 with C4H4O6HK, followed by impregnation, drying and calcination at 600 °C for 6 h, the catalyst was characterized by XRD, FTIR, SEM, BET, TGA, UV and the Hammett indicators. The yield of the biodiesel was proportional to the catalyst basicity. The catalyst had granular and porous structures with high basicity and superior performance. Combined conditions of 16:1 molar ratio of methanol to oil, 5 wt.% catalyst amount, 60 °C reaction temperature and 30 min reaction time was enough for maximum yield of 90.1%. The catalyst maintained sustained activity after five cycles of use. The oxidative stability which was the main problem of the biodiesel was improved from 2.0 h to 3.2 h after 30 days using ascorbic acid as antioxidant. The other properties including the flash point, cetane number and the cold flow ones were however, comparable to international standards. The study indicated that Ti-0.7-600-6 is an efficient, economical and environmentally, friendly catalyst under ultrasonication for producing biodiesel from S. marianum oil with a substantial yield.  相似文献   

20.
The inherent periodically arranged M−NX, M−SX and M−OX units (M are usually Fe, Co, Ni, etc.) in metal–organic frameworks (MOFs) can be promising active centers in electrocatalysis. In previous studies, MOFs were usually constructed by energy-consuming hydro- or solvo-thermal reactions. Ultrasonic synthesis is a rapid and environment-friendly technique when envisaging MOFs’ industrial applications. In addition, different synthetic pathways for MOFs may lead to difference in their microstructure, resulting in different electrocatalytic performance. Nevertheless, only a handful of MOFs were successfully prepared by ultrasonic synthesis and few were applied in electrochemical catalysis. Herein, we constructed Ni/Co-catecholates (Ni/Co-CATs) synthesized by one-step ultrasonic method (250 W, 40 KHz, 25 W/L, Ultrasonic clearing machine) and compared their performance in oxygen reduction reaction (ORR) with that of Ni/Co-CATs synthesized by hydrothermal method. Ni-CAT and Co-CAT prepared by ultrasonic showed the half-wave potential of −0.196 V and −0.116 V (vs. Ag/AgCl), respectively. The potentials were more positive than those prepared by hydro-thermal method. And they showed excellent electrochemical stability in neutral solution. The latter was only 32 mV lower than that of commercial Pt/C. The improved performance in ORR was attributed to higher specific surface area and mesopore volume as well as more structural defects generated in the ultrasonic synthesis process, which could facilitate their exposure of electrocatalytic active sites and their mass transport. This work gives some perspective into cost-effective synthetic strategies of efficient MOFs-based electrocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号