首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Resistant starch type 2 (RS) was isolated from lotus stem using enzymatic digestion method. The isolated RS was subjected to ultrasonication (US) at different sonication power (100–400 W). The US treated and untreated RS samples were characterized using dynamic light scattering (DLS), scanning electron microscopy (SEM), light microscopy and Fourier transform infrared spectroscopy (FT-IR). DLS revealed that particle size of RS decreased from 12.80 µm to 413.19 nm and zeta potential increased from −12.34 mV to −26.09 mV with the increase in sonication power. SEM revealed smaller, disintegrated and irregular shaped RS particles after ultrasonication. FT-IR showed the decreased the band intensity at 995 cm−1 and 1047 cm−1 signifying that US treatment decreased the crystallinity of RS and increased its amorphous character. The bile acid binding, anti-oxidant and pancreatic lipase inhibition activity of samples also increased significantly (p < 0.05) with the increase in sonication power. Increase in US power however increased the values of hydrolysis from 23.11 ± 1.09 to 36.06 ± 0.13% and gylcemic index from 52.39 ± 0.38 to 59.50 ± 0.11. Overall, the non-thermal process of ultrasonic treatment can be used to change the structural, morphological and nutraceutical profile of lotus stem resistant starch which can have great food and pharamaceutical applications.  相似文献   

2.
In this research, oat resistant starch (ORS) was prepared by autoclaving-retrogradation cycle (ORS-A), enzymatic hydrolysis (ORS-B), and ultrasound combined enzymatic hydrolysis (ORS-C). Differences in their structural features, physicochemical properties and digestive properties were studied. Results of particle size distribution, XRD, DSC, FTIR, SEM and in vitro digestion showed that ORS-C was a B + C-crystal, and ORS-C had a larger particle size, the smallest span value, the highest relative crystallinity, the most ordered and stable double helix structure, the roughest surface shape and strongest digestion resistance compared to ORS-A and ORS-B. Correlation analysis revealed that the digestion resistance of ORS-C was strongly positively correlated with RS content, amylose content, relative crystallinity and absorption peak intensity ratio of 1047/1022 cm−1 (R1047/1022), and weakly positively correlated with average particle size. These results provided theoretical support for the application of ORS-C with strong digestion resistance prepared by ultrasound combined enzymatic hydrolysis in the low GI food application.  相似文献   

3.
Cellulose microparticles from ginkgo seed shells were treated by ultrasonic treatments within the selected output powders (150–600 W) and durations (10–60 min) to produce cellulose nanoparticles. The main aim of this study was to investigate effects of ultrasonic conditions on the interfacial property and emulsifying property of those cellulose nanoparticles. Compared to ultrasonic output powers, ultrasonic durations showed the greater influence on morphology and physical properties of cellulose nanoparticles. Atomic force microscopy revealed that noodle-like cellulose particles with 1100 nm in length gradually became the short rod-like nanoparticles with 300 nm in length with increasing of ultrasonic duration from 10 min to 60 min. Moreover, results of contact angles indicated that ultrasound could significantly improve hydrophobicity of cellulose nanoparticles. The interfacial shear rheology showed that although all cellulose nanoparticles exhibited the similar interface adsorption behavior which showed the initial lag-phase of adsorption, followed by the interface saturation, the time of this initial lag-phase was affected by ultrasonic conditions. The increase of ultrasonic duration and ultrasonic power could shorten the time of this initial lag-phase, suggesting the resulting cellulose nanoparticles easier adsorption at the O/W interface. It was probably attributed to its small size and high hydrophobicity induced by intense ultrasonic treatments. Meanwhile, the cellulose nanoparticles with small size and higher hydrophobicity exhibited the better emulsifying ability to stabilize oil-in-water emulsions due to the formation of the viscoelastic interfacial film. This study improved understanding about changes in interfacial and emulsifying properties of cellulose nanoparticles caused by ultrasonic treatments.  相似文献   

4.
In this study, hemp seed oil (HSO) emulsions stabilized with hemp seed protein (HPI) were prepared and treated with high intensity ultrasonic (HIU). The effects of different treatment powers (0, 150, 300, 450, 600 W) on the properties, microstructure and stability of emulsions were investigated. HIU-treated emulsions showed improved emulsifying activity index and emulsifying stability index, reduced particle size, and increased absolute values of ζ-potential, with the extreme points of these indices occurring at a treatment power of 450 W. Here, the emulsion showed the best dispersion and the smallest particle size in fluorescence microscopy observation, with the highest adsorbed protein content (30.12%), and the highest tetrahydrocannabinol (THC) retention rate (87.64%). The best thermal and oxidative stability of the emulsions were obtained under HIU treatment with a power of 450 W. The D43 and the peroxide values (POV) values after 30 d storage were the smallest at 985.74 ± 64.89 nm and 4.6 μmol/L, respectively. Therefore, 450 W was optimal HIU power to effectively improve the properties of HPI-stabilized HSO emulsion and promote the application of HSO and its derivatives in food processing production.  相似文献   

5.
As a non-thermal processing method, the ultrasound treatment prior to the frying process has been demonstrated with great potential in reducing the oil absorption of fried food. This research aimed to evaluate the effect of ultrasound pretreatment on starch properties, water status, pore characteristics, and the oil absorption of potato slices. Ultrasound probe set with two power (360 W and 600 W) at the frequency of 20 kHz for 60 min was applied to perform the pretreatments. The results showed that ultrasound pretreatment led to the surface erosion of starch granules and higher power made the structure of starch disorganized. Moreover, the fraction of bound water and immobilized water were changed after ultrasonic pretreatment. Pores with the minor diameters (0.4–3 μm and 7–12 μm) were formed after ultrasound pretreatment. The penetrated surface oil (PSO) content, and structure oil (STO) content were reduced by 27.31% and 22.25% respectively with lower power ultrasound pretreatment. As the ultrasound power increased, the surface oil (SO) content and PSO content increased by 25.34% and 12.89% respectively, while STO content decreased by 38.05%. By using ultrasonic prior to frying, the quality of potato chips has been greatly improved.  相似文献   

6.
Ultrasound treatment was used to successfully prepare Quercetin (Qu)-loaded Casein phosphopeptides (CPP)/chitosan (CS) nanoparticles. Compared with the control, the above ternary nanoparticles with the smallest size (241.27 nm, decreased by 34.32%), improved encapsulation efficiency of Qu (78.55%, increased by 22.12%) when prepared under following conditions: ultrasonic frequency, 20/35/50 kHz; the power density, 80 W/L; the time, 20 min, and the intermittent ratio, 20 s/5s. Electrostatic interactions, hydrogen bonding, and hydrophobic interactions were the main driving forces for nanoparticles formulation, which were strengthened by ultrasound treatment. The compact, homogeneous and spherical composite nanoparticles obtained by sonication were clearly observed by scanning electron microscope and atomic force microscope. The environmental stability (NaCl, pH, exposure time, storage time, and simulated gastrointestinal digestion) and antioxidant activity of the ternary nanoparticles were remarkably enhanced after ultrasonic treatment. Furthermore, the ternary nanoparticles prepared by ultrasound exhibited excellent stability in simulated gastrointestinal digestion. The above results indicate that ultrasound not only increases the loading of the nanoparticles on bioactive substances but also improves the environmental stability and antioxidant activity of the formed nanoparticles. Ultrasound-assisted preparation of nanoparticles loaded with bioactive substances could be well used in the functional food and beverage industry.  相似文献   

7.
超声波处理对脱脂麦胚分离蛋白结构的变化研究   总被引:4,自引:0,他引:4  
Liu B  Ma HL  Li SJ  Tian WM  Wu BG 《光谱学与光谱分析》2011,31(8):2220-2225
应用傅里叶红外光谱(FTIR)、荧光光谱研究超声处理对脱脂麦胚分离蛋白(DWGP)结构的变化,建立DWGP高效酶解与其结构变化之间的关系.研究发现,超声处理均可提高DWGP的酶解效果,特别是经超声功率600 W、时间10 min处理后,酶解液抑制活性与对照组相比提高了23.96%.通过荧光光谱发现,超声作用改变DWGP溶液荧光强度,适当超声处理可使蛋白分子伸展、生色基团外露,有助于蛋白酶解后获得活性更高的抑制肽.采用对FTIR谱酰胺I带进行曲线拟合的方法,定量分析了不同超声功率、时间对DWGP二级结构的影响,发现超声作用使β-折叠相对含量下降而β-转角含量增加,这可能是DWGP酶解后获得高效抑制肽的主要原因.  相似文献   

8.
The application of ultrasonic irradiation (40 KHz, 120 W) in the enzymatic extraction of bovine tendon collagen has been investigated. Our results show that using the ultrasonic irradiation increases the yield of collagen up to ~124% and significantly shortens the extraction time in comparison with the conventional pepsin isolation method. Such improvements are attributed to the enhancement of the enzyme activity and the dissolution of collagen substrate because the ultrasonic irradiation disperses the pepsin aggregates and opens up the collagen fibrils, thus the enzymatic hydrolysis is facilitated. AFM imaging shows the same fibrillar structure of tendon collagens generated from both the methods. The CD and FT-IR measurements reveal that the triple helix structure of collagen remains intact even after the ultrasonic irradiation. This study shows that the mild ultrasound irradiation can effectively improve the efficiency of pepsin extraction of natural collagen without any compromise of the resultant collagen quality.  相似文献   

9.
In order to provide a reference for improving the physicochemical properties of starch, the study of starch polyphenol complex interaction has aroused considerable interest. As a common method of starch modification, ultrasound can make starch granules have voids and cracks, and make starch and polyphenols combine more closely. In this research, canistel seed starch was modified by ultrasonic treatment alone or combined with quercetin. The molecular structure, particle characteristics and properties of starch were evaluated. With the increase of ultrasonic temperature, the particle size of the dextrinized starch granules increased, but the addition of quercetin could protect the destruction of starch granule size by ultrasonic; X-ray diffraction and infrared spectra indicated that quercetin was bound to the surface of canistel seed starch through hydrogen bonding, and the complex and the original starch had the same crystal structure and increased crystallinity; by molecular simulation, quercetin bound inside the starch molecular helix preserved the crystalline helical configuration of starch to some extent and inhibited the complete unhelicalization of starch molecules. Meanwhile, hydrogen bonding was the main driving force for the binding of starch molecules to quercetin, and van der Waals interactions also promoted the binding of both. In the physicochemical properties, as the temperature increased after the combination of ultrasonic modified starch combined with quercetin, the solubility, swelling force and apparent viscosity of the compound increased significantly, and it has higher stability and shear resistance.  相似文献   

10.
In this study, daidzein microparticles (DMP) were prepared using an improved ultrasound-assisted antisolvent precipitation method. Preliminary experiments were conducted using six single-factor experiments, and principal component analysis (PCA) was adopted to obtain the three staple elements of the ultrasonic power, solution concentration, and nozzle diameter. The response surface Box-Behnken (BBD) design was used to optimize the level of the above factors. The optimal preparation conditions of the DMP were obtained as follows: the flow rate was 4 mL/min, the concentration of the daidzein solution was 16 mg/mL, the ratio of antisolvent to solvent (liquid-to-liquid ratio) was 9, the nozzle diameter was 300 μm, the ultrasonic power was 180 W (665 W/L), and the system speed was 760 r/min. The minimum average particle size of DMP was 181 ± 2 nm. The properties of daidzein particles before and after preparation were analyzed via scanning electron microscopy, X-ray diffraction analysis, Differential scanning calorimetry and Fourier transform infrared spectroscopy, no obvious change in its chemical structure was observed, but crystallinity was reduced. Compared with daidzein powder, DMP has a higher solubility and stronger antioxidant capacity. The above results indicate that the improved method of ultrasonication combined with antisolvent can reduce the size of daidzein particles and has a great potential in practical production.  相似文献   

11.
Ultrasound technology was used to treat rice bran protein (RBP), and the structural and functional properties of ultrasonically treated RBP (URBP) and its chlorogenic acid (CA) complex were studied. When ultrasonic power of 200 W was applied for 10 min, the maximum emission peak λmax of the URBP-CA complex in the fluorescence spectrum was red-shifted by 3.6 nm compared to that of the untreated complex. The atomic force microscope (AFM) analysis indicated that the surface roughness of the complex was minimized (3.89 nm) at the ultrasonic power of 200 W and treatment time of 10 min. Under these conditions, the surface hydrophobicity (H0) was 1730, the contents of the α-helix and β-sheet in the complex were 2.97% and 6.17% lower than those in the untreated sample, respectively, the particle size decreased from 106 nm to 18.2 nm, and the absolute value of the zeta-potential increased by 11.0 mV. Therefore, ultrasonic treatment and the addition of CA changed the structural and functional properties of RBP. Moreover, when ultrasonic power of 200 W was applied for 10 min, the solubility, emulsifying activity index (EAI), and emulsion stability index (ESI) were 68%, 126 m2/g, and 37 min, respectively.  相似文献   

12.
TiO2 catalyst was synthesized in the presence of ultrasound (ultrasonic horn at 20 kHz frequency and 70% duty cycle) at different power (80 W to 120 W) and durations as well as surfactant concentration with an objective of establishing best conditions for achieving lowest particle size of the photocatalyst. Detailed characterization in terms of crystal phase, crystallinity, functional groups and morphology of the photocatalyst has been performed using SEM, XRD and FTIR analysis. It was demonstrated that sonication significantly reduced the particle size with high degree of sphericity and homogeneity as compared to conventionally synthesized TiO2 with similar crystallinity in both cases. The catalytic performance was subsequently evaluated for the deep desulfurization of thiophene. Different desulfurization approaches including individual US (ultrasonic horn at 20 kHz frequency, 110 W power and 70% duty cycle) and UV irradiations, US/UV, US/UV/H2O2, US/UV/TiO2 and US/UV/H2O2/TiO2 were applied to evaluate the catalytic activity. The best approach was demonstrated as US/UV/H2O2/TiO2 and also activity of catalyst synthesized using ultrasound was much better compared to conventionally synthesized catalyst. The studies related to different model solvents demonstrated lowest reactivity for toluene whereas n-hexane and n-octane resulted in complete desulfurization in 60 min and 50 min treatment respectively. The desulfurization followed pseudo first order reaction kinetics irrespective of the solvent used. Overall the work clearly demonstrated the efficacy of ultrasound in improving the catalyst synthesis as well as desulfurization of thiophene.  相似文献   

13.
In this study, microcapsules were prepared by spray drying and embedding hemp seed oil (HSO) with soy protein isolate (SPI) and maltodextrin (MD) as wall materials. The effect of ultrasonic power on the microstructure and characteristics of the composite emulsion and microcapsules was studied. Studies have shown that ultrasonic power has a significant impact on the stability of composite emulsions. The particle size of the composite emulsion after 450 W ultrasonic treatment was significantly lower than the particle size of the emulsion without the ultrasonic treatment. Through fluorescence microscopy observation, HSO was found to be successfully embedded in the wall materials to form an oil/water (O/W) composite emulsion. The spray-dried microcapsules showed a smooth spherical structure through scanning electron microscopy (SEM), and the particle size was 10.7 μm at 450 W. Fourier transform infrared (FTIR) spectroscopy analysis found that ultrasonic treatment would increase the degree of covalent bonding of the SPI-MD complex to a certain extent, thereby improving the stability and embedding effect of the microcapsules. Finally, oxidation kinetics models of HSO and HSO microcapsules were constructed and verified. The zero-order model of HSO microcapsules was found to have a higher degree of fit; after verification, the model can better reflect the quality changes of HSO microcapsules during storage.  相似文献   

14.
The present study deals with the size reduction based on the recrystallization (antisolvent approach using water) of 3,3′-Diamino Diphenyl Sulfone (DADPS) using different types of cavitational reactors as an alternative to the conventional process of mechanical size reduction, which is an energy intensive approach. Ultrasound was applied for fixed time specific to the reactors namely ultrasonic probes at different power dissipation levels and also ultrasonic bath. A High Speed Homogenizer was also used at varying speeds of rotation to establishing the efficacy for size reduction. The processed sample was analysed for particle size and morphology using particle size analyser and optical microscopy respectively. The final yield of recrystallization was also determined. The power density in W/L and power intensity in W/m2 calculated for each equipment has been used to establish efficacy for size reduction since all devices had dissimilar configurations. Based on the studies of varying power intensity of the different US equipment, it was established that larger the power intensity and power density, smaller was the resultant final particle size after treatment for same time. Among the various ultrasonic devices used, Sonics VCX750 probe yielded the best size reduction of 85.47% when operated at 40% amplitude for 60 min for a volume of 200 ml. A High Speed Homogenizer used at 7000 rpm gave 92.35% of size reduction in 15 min operation and also demonstrated the best energy efficiency. The work has elucidated the comparison of different cavitational devices for size reduction for the first time and presented the best reactors and conditions for the desired size reduction.  相似文献   

15.
Ultrasound-assisted approach has been investigated for delignification so as to develop green and sustainable technology. Combination of NaOH with ultrasound has been applied with detailed study into effect of various parameters such as time (operating range of 15–90 min), alkali concentration (0.25 M−2.5 M), solvent loading (1:15–1:30 w/v), temperature (50–90 ˚C), power (40–140 W) and duty cycle (40–70 %) at fixed frequency of 20 kHz. The optimized operating conditions established for the ultrasonic horn were 1 M as the NaOH concentration, 1 h as treatment time, 70˚C as the operating temperature, 1:20 as the biomass loading ratio, 100 W as the ultrasonic power and 70% duty cycle yielding 67.30% as the delignification extent. Comparative study performed using conventional and ultrasonic bath assisted alkaline treatment revealed lower delignification as 48.09% and 61.55% respectively. The biomass samples were characterized by SEM, XRD, FTIR and BET techniques to establish the role of ultrasound during the treatment. The morphological changes based on the ultrasound treatment demonstrated by SEM were favorable for enhanced delignification and also the crystallinity index was more in the case of ultrasound treated material than that obtained by conventional method. Specific surface area and pore size determinations based on BET analysis also confirmed beneficial role of ultrasound. The overall results clearly demonstrated the intensification obtained due to the use of ultrasonic reactors.  相似文献   

16.
With the rapid development of oil hydrogenation industry, the development of oil hydrogenation catalyst has also become a research hotspot. In this paper, ultrasound-assisted precipitation technique is used to prepare Ni/Al2O3 catalyst. The effect of ultrasonic output power on catalyst performance is investigated. The prepared catalyst is applied to the hydrogenation reaction of castor oil. It is found that the prepared catalyst shows the best hydrogenation performance when ultrasonic output power, frequency and ultrasonic treatment time are 80 W, 40 kHz and 600 min respectively. It also indicates that ultrasound-assisted precipitation technique can reduce the particle size and increase the specific surface area of Ni/Al2O3 catalyst so that its activity is improved. In addition, six important elements that should be considered in the development of industrial oil refining catalysts are discussed, and the effects of these factors on the catalyst performance are discussed. Finally, new way for improving catalyst performance is given, and the application of some new materials and methods in oil refining is introduced.  相似文献   

17.
The ultrasonic formation of stable emulsions of a bioactive material, black seed oil, in skim milk was investigated. The incorporation of 7% of black seed oil in pasteurised homogenized skim milk (PHSM) using 20 kHz high intensity ultrasound was successfully achieved. The effect of sonication time and acoustic power on the emulsion stability was studied. A minimum process time of 8 min at an applied acoustic power of 100 W was sufficient to produce emulsion droplets stable for at least 8 days upon storage at 4 ± 2 °C, which was confirmed through creaming stability, particle size, rheology and color analysis. Partially denatured whey proteins may provide stability to the emulsion droplets and in addition to the cavitation effects of ultrasound are responsible for the production of smaller sized emulsion droplets.  相似文献   

18.
The purpose of this paper was to investigate the effect of ultrasound-ionic liquid (IL) pretreatment on the enzymatic and acid hydrolysis of the sugarcane bagasse and wheat straw. The lignocellulosic biomass was dissociated in ILs ([Bmim]Cl and [Bmim]AOC) aided by ultrasound waves. Sonication was performed at different frequencies (20, 28, 35, 40, and 50 kHz), a power of 100 W, a time of 30 min and a temperature of 80 °C. The changes in the structure and crystallinity of the cellulose were studied by Fourier transform infrared (FT-IR), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA). The amounts of the total reducing sugars, glucose, cellobiose, xylose and arabinose in the hydrolysates were determined. The results of FT-IR, XRD and TGA revealed that the structure of cellulose of both biomass samples remained intact after the pretreatment, but the crystallinity decreased. The enzymatic and acid hydrolysis of the biomass samples pretreated with the ultrasound-IL result in higher yields of the reducing sugars compared with the IL-pretreated sample. Enzymatic hydrolysis of bagasse and wheat straw pretreated with [Bmim]Cl-ultrasound resulted in maximal yields of glucose at 20 kHz (40.32% and 53.17%) and acid hydrolysis resulted in maximal yields of glucose at 40 kHz (33.32% and 48.07%). Enzymatic hydrolysis of bagasse and wheat straw pretreated with [Bmim]OAc-ultrasound show maximal yields of glucose at 28 kHz and acid hydrolysis at 50 kHz. Combination of ultrasound with [Bmim]OAc is more effective than [Bmim]Cl in terms of the yields of reducing sugar.  相似文献   

19.
A lysozyme-oregano essential oil (Lys-OEO) antibacterial emulsion was developed via ultrasonic treatment. Based on the general emulsion materials of ovalbumin (OVA) and inulin (IN), the addition of Lys and OEO successfully inhibited the growth of E. coli and S. aureus, two representatives of which were Gram-negative and Gram-positive bacteria respectively. The emulsion system in this study was designed to compensate for the limitation that Lys could only act on Gram-positive bacteria, and the stability of the emulsion was improved using ultrasonic treatment. The optimal amounts among OVA, Lys and OEO were found to be the mass ratio of 1:1 (Lys to OVA) and 20% (w/w) OEO. The ultrasonic treatment at the power of 200, 400, 600, and 800 W and time length of 10 min improved the stability of emulsion, in which the surface tension was below 6.04 mN/m and the Turbiscan stability index (TSI) did not exceed 10. The multiple light scattering showed that sonicated emulsions were less prone to delamination; salt stability and pH stability of emulsions were improved, CLSM image showed emulsion as oil-in-water type. In the meantime, the particles of the emulsions were found to become smaller and more uniform with ultrasonic treatment. The best dispersion and stability of the emulsion were both achieved at 600 W with a zeta potential of 7.7 mV, the smallest particle size and the most uniform particle distribution.  相似文献   

20.
As a new and clean extraction technology, ultrasonic extraction has been demonstrated with great potential in the preparation of modified starch. In order to increase its added value, it is necessary to modify pea starch to enlarge its application. In this study, the efficiency of combining ultrasonic with alkali in the extraction of pea starch was evaluated and compared to conventional alkali extraction. Ultrasonic-assisted alkali extraction conditions were optimized using single-factor experiments and response surface methodology. The results revealed that maximum yield of pea starch (54.43 %) was achieved using ultrasound-assisted alkali extraction under the following conditions: sodium hydroxide solution with a concentration of 0.33 %, solid/alkali solution ratio of 1:6 (w/v), ultrasonic power of 240 W, temperature of 42 °C, and extraction time of 22 min. The ultrasound-assisted alkali extraction yielded 13.72 % greater pea starch than conventional alkali extraction. On the other hand, morphological, structural, and physicochemical properties of the obtained starch isolates were evaluated. The ultrasound-assisted alkali extraction resulted in pea starch with greater amylose content, water-solubility, swelling power, and viscosity compared with conventional alkali extraction. Furthermore, ultrasonication influenced the morphological properties of pea starch granules, while the molecular structure and crystal type were not affected. Moreover, the ultrasonic-assisted extraction produced starch with a slightly greater resistant starch content. Therefore, ultrasonic-assisted extraction can be suggested as a potential method for extracting pea starch with improved functional properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号