首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluates the bleaching efficiency of enzymatically scoured linen fabrics using a combined laccase–hydrogen peroxide bleaching process with and without ultrasonic energy, with the goal of obtaining fabrics with high whiteness levels, well preserved tensile strength and higher dye uptake. The effect of the laccase enzyme and the combined laccase–hydrogen peroxide bleaching process with and without ultrasound has been investigated with regard to whiteness value, tensile strength, dyeing efficiency and dyeing kinetics using both reactive and cationic dyes. The bleached linen fabrics were characterized using X-ray diffraction and by measuring tensile strength and lightness. The dyeing efficiency and kinetics were characterized by measuring dye uptake and colour fastness. The results indicated that ultrasound was an effective technique in the combined laccase–hydrogen peroxide bleaching process of linen fabrics. The whiteness values expressed as lightness of linen fabrics is enhanced by using ultrasonic energy. The measured colour strength values were found to be slightly better for combined laccase–hydrogen peroxide/ultrasound-assisted bleached fabrics than for combined laccase–hydrogen peroxide for both reactive and cationic dyes. The fastness properties of the fabrics dyed with reactive dye were better than those obtained when using cationic dye. The time/dye uptake isotherms were also enhanced when using combined laccase–hydrogen peroxide/ultrasound-assisted bleached fabric, which confirms the efficiency of ultrasound in the combined oxidative bleaching process. The dyeing rate constant, half-time of dyeing and dyeing efficiency have been calculated and discussed.  相似文献   

2.
《Ultrasonics sonochemistry》2014,21(4):1535-1543
The potential of ultrasound-assisted technology has been demonstrated by several laboratory scale studies. However, their successful industrial scaling-up is still a challenge due to the limited pilot and commercial sonochemical reactors. In this work, a pilot reactor for laccase-hydrogen peroxide cotton bleaching assisted by ultrasound was scaled-up. For this purpose, an existing dyeing machine was transformed and adapted by including piezoelectric ultrasonic devices. Laboratory experiments demonstrated that both low frequency, high power (22 kHz, 2100 W) and high frequency, low power ultrasounds (850 kHz, 400 W) were required to achieve satisfactory results. Standard half (4 g/L H2O2 at 90 °C for 60 min) and optical (8 g/L H2O2 at 103 °C for 40 min) cotton bleaching processes were used as references. Two sequential stages were established for cotton bleaching: (1) laccase pretreatment assisted by high frequency ultrasound (850 kHz, 400 W) and (2) bleaching using high power ultrasound (22 kHz, 2100 W). When compared with conventional methods, combined laccase-hydrogen peroxide cotton bleaching with ultrasound energy improved the whitening effectiveness. Subsequently, less energy (temperature) and chemicals (hydrogen peroxide) were needed for cotton bleaching thus resulting in costs reduction. This technology allowed the combination of enzyme and hydrogen peroxide treatment in a continuous process. The developed pilot-scale reactor offers an enhancement of the cotton bleaching process with lower environmental impact as well as a better performance of further finishing operations.  相似文献   

3.
Acoustic cavitation formed due to propagation of ultrasound wave inside a dye bath was successfully used to dye cotton fabric with a reactive dye at lower temperatures. The energy input to the system during sonication was 0.7 W/cm2. This was within the energy range that contributes towards forming cavitation during ultra-sonication. The influence of ultrasound treatment on dye particle size and fiber morphology is discussed. Particle size analysis of the dye bath revealed ultra-sonication energy was capable of de-agglomeration of hydrolyzed dye molecules during dyeing. SEM micrograph and AFM topographical image of the fiber surface revealed fiber morphology remains unchanged after the sonication. The study was extended in understanding the contribution of ultrasound method of dyeing towards achieving good color strength on the fabric, compared to the normal heating method of dyeing. Study showed color strength obtained using ultra sound method of dyeing is higher compared to normal heating dyeing. Ultrasound energy was able to achieve the good color strength on cotton fabric at very low temperature such as 30 °C, which was approximately 230% more than the color strength achieved in normal heating method of dyeing. This indicates that energy input to the system using ultrasound was capable of acting as an effective alternative method of dyeing knitted cotton fabrics with reactive dye.  相似文献   

4.
The dyeing of cationized cotton fabric with Solfix E using colouring matter extracted from Cochineal dye has been studied using both conventional and ultrasonic techniques. Factors affecting dye extraction such as ultrasound power, particle size, extraction temperature and time were studied. The results indicated that the extraction by ultrasound at 300 W was more effective at lower temperature and time than conventional extraction. The effect of various factors of dye bath such as pH, salt concentration, ultrasound power, dyeing time and temperature were investigated. The colour strength values obtained were found to be higher with ultrasound than with conventional techniques. The results of fastness properties of the dyed fabrics were fair to good. The scanning electron microscope (SEM) images of the morphological and X-ray analyzes were measured for cationized cotton fabrics dyed with both conventional and ultrasound methods, thus showing the sonicator efficiency.  相似文献   

5.
Here, titanium dioxide nanoparticles (NPs) were sonosynthesized and loaded simultaneously onto the cotton fabric. Titanium tetra isopropoxide (TTIP) was used as precursor and ultrasonic irradiation was utilized as a tool for synthesis of TiO2 in low temperature with anatase structure and loading nanoparticles onto the cotton fabric. TiO2 loaded cotton fabric was characterized by XRD, FE-SEM, EDS, and XRF. Moreover, several properties of the treated cotton fabrics such as self-cleaning, UV protection, washing durability, and tensile strength were studied. The effect of variables, including TTIP concentration and sonication time, was investigated based on central composite design (CCD) and response surface methodology (RSM). The results confirmed formation of anatase TiO2 nanoparticles with 3–6 nm crystalline size loaded onto the cotton fabric at low temperature (75 °C) that led to good self-cleaning and UV-protection properties. The excellent UV-protection rating of the treated fabric maintained even after 25 home launderings indicating an excellent washing durability. Interestingly, sonochemical method had no negative influence on the cotton fabric structure. The statistical analysis indicated significant effect of both TTIP concentration and sonication time on the content of the loaded TiO2 on the fiber and self-cleaning properties of the fabric.  相似文献   

6.
Polyester fabrics were subjected to low temperature plasma (LTP) exposure. The anti-static behaviours of the plasma treated fabric were greatly improved. The discharge power of 50 V and the electrode gap of 4 mm were recommended for an optimum result. Acrylic acid treatment further enhanced the anti-static properties of the specimens. Influences of the acid concentration, the treating duration and the temperate during the acrylic acid treatment on the anti-static properties of the fabric were revealed.  相似文献   

7.
《Ultrasonics sonochemistry》2014,21(4):1477-1481
The possibility of reducing the use of auxiliaries in conventional cellulose acetate dyeing with Disperse Red 50 using ultrasound technique was studied as an alternative to the standard procedure. Dyeing of cellulose acetate yarn was carried out by using either mechanical agitation alone, with and without auxiliaries, or coupling mechanical and ultrasound agitation in the bath where the temperature range was maintained between 60 and 80 °C.The best results of dyeing kinetics were obtained with ultrasound coupled with mechanical agitation without auxiliaries (90% of bath exhaustion value at 80 °C). Hence the corresponding half dyeing times, absorption rate constants according to Cegarra–Puente modified equation and ultrasound efficiency were calculated confirming the synergic effect of sonication on the dyeing kinetics. Moreover the apparent activation energies were also evaluated and the positive effect of ultrasound added to mechanical agitation was evidenced by the lower value (48 kJ/mol) in comparison with 112 and 169 kJ/mol for mechanical stirring alone with auxiliaries and without, respectively.Finally, the fastness tests gave good values for samples dyed with ultrasound technique even without auxiliaries. Moreover color measurements on dyed yarns showed that the color yield obtained by ultrasound-assisted dyeing at 80 °C of cellulose acetate without using additional chemicals into the dye bath reached the same value yielded by mechanical agitation, but with remarkably shorter time.  相似文献   

8.
Promoting processing efficiency and taking advantage of agricultural by-products are two promising ways to achieve sustainable textile industry. This study presents a customized efficient ultrasonic-assisted bleaching strategy for yak hair – a widely existing but underexploited secondary dark shade fibre from yak. A melanin-targeted Fenton oxidation process is established which involves three phases, i.e., (I) incorporation of Fe2+ ions with melanin, (II) catalytic oxidative bleaching using hydrogen peroxide (H2O2), and (III) reductive cleansing. The bleaching efficacy, dyeing performance and tensile property of yak hair treated with and without ultrasound were explored and compared. Further, the ultrasonic bleaching mechanism in terms of the catalytic effect of Fe2+ ions, the promotion of H2O2 decomposition, removal of melanin granule from yak hair, were demonstrated. Finally, the main effects and interactions of parameters in phase II, and optimal condition were obtained through mathematical modelling based on a central composite design (CCD). Results reveal that ultrasonic bleaching dramatically enhances the whiteness index (WI) of yak hair from 11 to 45 which is 44.6% higher than those bleached without ultrasound, and also promotes the uptake of acid dyes. There is only 15% tensile strength loss and 14% elongation increment of yak hair after ultrasonic bleaching, rising from a slight damage of cuticle layer and cleavage of disulfide bonds, respectively. In the study of bleaching mechanism, Fe2+ ion is confirmed to improve the H2O2 decomposition rate by 20.9% which further runs up to 35.9% after introducing ultrasound. Ultrasound increases the concentration of hydroxyl radicals (HO) by 94% which are the main oxidative species participating in bleaching confirmed by HO scavenging experiment. The porous structure was observed on the cross section of yak hair stemming from the removal of melanin granules contributed by the cleaning action of ultrasound. A theoretical highest WI of 52.4 can be achieved under an optimal condition based on the CCD study. In general, the proposed melanin-targeted bleaching strategy for yak hair that integrates ultrasonic technology and Fenton reaction, is beneficial to the development of sustainable textile industry from material and processing perspectives.  相似文献   

9.
A large number of papers of the literature quote dyeing intensification based on the application of ultrasound (US) in the dyeing liquor. Mass transfer mechanisms are described and quantified, nevertheless these experimental results in general refer to small laboratory apparatuses with a capacity of a few hundred millilitres and extremely high volumetric energy intensity. With the strategy of overcoming the scale-up inaccuracy consequent to the technological application of ultrasounds, a dyeing pilot-plant prototype of suitable liquor capacity (about 40 L) and properly simulating several liquor to textile hydraulic relationships was designed by including US transducers with different geometries.Optimal dyeing may be obtained by optimising the distance between transducer and textile material, the liquid height being a non-negligible operating parameter. Hence, mapping the cavitation energy in the machinery is expected to provide basic data on the intensity and distribution of the ultrasonic field in the aqueous liquor. A flat ultrasonic transducer (absorbed electrical power of 600 W), equipped with eight devices emitting at 25 kHz, was mounted horizontally at the equipment bottom.Considering industrial scale dyeing, liquor and textile substrate are reciprocally displaced to achieve a uniform colouration. In this technology a non uniform US field could affect the dyeing evenness to a large extent; hence, mapping the cavitation energy distribution in the machinery is expected to provide fundamental data and define optimal operating conditions. Local values of the cavitation intensity were recorded by using a carefully calibrated Ultrasonic Energy Meter, which is able to measure the power per unit surface generated by the cavitation implosion of bubbles. More than 200 measurements were recorded to define the map at each horizontal plane positioned at a different distance from the US transducer; tap water was heated at the same temperature used for dyeing tests (60 °C). Different liquid flow rates were tested to investigate the effect of the hydrodynamics characterising the equipment.The mapping of the cavitation intensity in the pilot-plant machinery was performed to achieve with the following goals: (a) to evaluate the influence of turbulence on the cavitation intensity, and (b) to determine the optimal distance from the ultrasound device at which a fabric should be positioned, this parameter being a compromise between the cavitation intensity (higher next to the transducer) and the US field uniformity (achieved at some distance from this device).By carrying out dyeing tests of wool fabrics in the prototype unit, consistent results were confirmed by comparison with the mapping of cavitation intensity.  相似文献   

10.
研究了染色温度对叶绿素铜钠盐上染蚕丝织物的上染速率、染色织物颜色特征值及色牢度的影响。结果表明,在40—90℃染色温度范围内,当温度为70℃时,叶绿素铜钠盐上染蚕丝初期上染速率、平衡上染率均最大,染色蚕丝织物最为深绿;叶绿素铜钠盐染色蚕丝织物具有很好的耐洗和耐摩擦牢度(4级及以上),但其耐日光色牢度较差(2—3级);提高染色温度、延长染色时间对染色蚕丝织物的耐日光色牢度没有明显影响。叶绿素铜钠盐染色蚕丝织物适宜制作高档的居家服饰。  相似文献   

11.
To study the potential usefulness of ultrasound (0, 30, and 60 min) and sodium bicarbonate (0 % and 0.2 %) combination on the reduced-salt pork batters, the changes in water holding capacity, gel properties, and microstructure were investigated. The pH, salt-soluble proteins solubility, cooking yield, and b* values of reduced-salt pork batters significantly increased (P < 0.05) with the increase in ultrasound time and the addition of sodium bicarbonate, leading to the hardness, springiness, cohesiveness, and chewiness significantly increased (P < 0.05). Furthermore, the use of ultrasound-assisted sodium bicarbonate treatment caused the reduced-salt pork batters to form a typical spongy structure with more evenly cavities. Due to the initial relaxation time of T21 and T22 were shorter, and the peak ratio of P21 was increased and P22 was decreased after ultrasound-assisted sodium bicarbonate treatment, implying that the mobility of water was reduced. Thus, the use of ultrasound-assisted sodium bicarbonate treatment enabled reduced-salt pork batters to have better gel characteristics and higher cooking yield.  相似文献   

12.
In this paper, preparing copper catalyst by ultrasound-assisted chemical precipitation method is investigated. The used equipment is JP-020 ultrasonic cleaner, power and frequency are 180 W and 40 kHz respectively. Under the action of ultrasound, CuSO4·5H2O is reduced by ascorbic acid to obtain copper. The products are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and catalytic performance test. The results show that the morphology of copper products is rod-like and irregular granular. Copper catalyst has good catalytic oxidation performance for dyes methylene blue, crystal violet, alizarin red and Rhodamine B. The catalytic efficiency of 10 mg catalyst copper to 6 mg/L methylene blue reaches 98.1%, and the catalytic efficiency of the catalyst increases with the increase of catalyst dosage and the decrease of dye solution concentration. In addition, the new preparation techniques for Cu-based catalysts based on coprecipitation method are compared. Finally, the development trend of the new technology of copper-based catalyst preparation based on coprecipitation method is pointed out.  相似文献   

13.
A magnetic cotton/polyester fabric with photocatalytic, sonocatalytic, antibacterial and antifungal activities was successfully prepared through in-situ sonosynthesis method under ultrasound irradiation. The process involved the oxidation of Fe2+ to Fe3+ via hydroxyl radicals generated through bubbles collapse in ultrasonic bath. The treated samples were analyzed by X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometry. Photocatalytic and sonocatalytic activities of magnetite treated fabrics were also evaluated toward Reactive Blue 2 decoloration under sunlight and ultrasound irradiation. Central composite design based on response surface methodology was applied to study the influence of iron precursor, pH and surfactant concentration to obtain appropriate amount for the best magnetism. Findings suggested the potential of one-pot sonochemical method to synthesize and fabricate Fe3O4 nanoparticles on cotton/polyester fabric possessing appropriate saturation magnetization, 95% antibacterial efficiency against Staphylococcus aureus and 99% antifungal effect against Candida albicans, 87% and 70% dye photocatalytic and sonocatalytic decoloration along with enhanced mechanical properties using only one iron rich precursor at low temperature.  相似文献   

14.
In this work, the effect of dual-frequency ultrasound-assisted ionic liquids (ILs) pretreatment on the functional properties of soy protein isolate (SPI) hydrolysates was investigated. The degree of hydrolysis (DH) of SPI pretreated by ultrasound and [BMIM][PF6] increased by 12.53% as compared to control (P < 0.05). More peptides with low molecular weight were obtained, providing support for the changes in DH. The trichloroacetic acid-nitrogen soluble index presented an increase, suggesting a better protein hydrolysate property. The increase in the calcium-binding activity showed the ultrasound-assisted ILs pretreatment could potentially improve bone health. The foaming capacity and stability of SPI hydrolysates pretreated by ultrasound-assisted [BMIM][PF6] always increased remarkably as compared to ultrasound-assisted [BDMIM][Cl] pretreatment. However, the synergistic effect of ultrasound-assisted [BMIM][PF6] on the emulsifying activity and antioxidant activities (DPPH and hydroxyl radical scavenging activity) was not as ideal as ultrasound-assisted [BDMIM][Cl] pretreatment, which may be affected by the structure of peptide. In conclusion, these results indicated the combination of dual-frequency ultrasound and ionic liquids would be a promising method to improve the functional properties of SPI hydrolysates and broaden the application scope of compound modification in proteolysis industry.  相似文献   

15.
Cyclodextrin metal–organic framework by ultrasound-assisted rapid synthesis for caffeic acid (CA) loading and antibacterial application (U-CD-MOF) was successfully studied and this method shortened the preparation time to a few minutes. It was found that the ultrasonic power, reaction time and temperature would affect the morphology and size of the obtained crystal. Under the optimal conditions, U-CD-MOF had a cubic structure with uniform size of 8.60 ± 1.95 μm. U-CD-MOF was used to load the antibacterial natural product CA to form the composite (CA@U-CD-MOF) and the loading rate of CA@U-CD-MOF to CA could reach 19.63 ± 2.53%, which was more than twice that of γ-CD. Various techniques were applied to characterize the synthesized crystal, including Powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and N2 adsorption. In addition, antibacterial tests were performed on the obtained crystal. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CA@U-CD-MOF for Escherichia coli O157: H7 (E. coli O157: H7) were both 25 mg·mL−1, and the MIC for Staphylococcus aureus (S. aureus). was 25 mg·mL−1. The sustained release behavior of CA@U-CD-MOF to CA in ethanol fitted well to Higuchi model and the loading of CA was supported by molecular docking results. In general, U-CD-MOF was successfully achieved by ultrasound-assisted rapid synthesis and the obtained crystal was further evaluated for potential antibacterial application.  相似文献   

16.
A new method for the modification of the properties of polyamide fabric, based on exposure to the output from a CO2 laser, has been investigated. It was found that, after laser modification of polyamide fabric, the dyeability of fabric was increased significantly, while the bursting strength was decreased. The reasons for this drastic increase in dyeability of polyamide fabrics have been analyzed with the help of FTIR and iodine sorption methods, revealing a relationship with a decrease in the crystallinity of the polyamide. It was observed that, as the laser modification of the fabric was carried out with low intensity, the concentration of free amino groups, which are necessary during dyeing with acid and reactive dyes, increased.  相似文献   

17.
High intensity ultrasound was used for the synthesis and simultaneous deposition of TiO2:Fe3O4:Ag nanocomposites on polyester surface providing a feasible route for imparting magnetic and enhanced antibacterial and self-cleaning activities with controllable hydrophilicity/hydrophobicity at low temperature. Synergistic impact of sonochemistry and physical effects of ultrasound originating from implosive collapse of bubbles were responsible for the formation and adsorption of nanomaterials on the fabric surface during ultrasound irradiation. The increase in photocatalytic activity of TiO2 was obtained attributing to the co-operation of iron oxide and silver nanoparticles nucleated on TiO2 surface boosting the electron–hole pair separation and prolonging their recombination rate. The process was further optimized in terms of reagents concentrations including Fe2+/TiO2 and Ag/TiO2 molar ratios using central composite design in order to achieve the best self-cleaning property of the treated fabric. The magnetic measurements indicated the super-paramagnetic behavior of the treated fabric with saturation magnetization of 4.5 (emu/g). Findings suggest the potential of the proposed facial method in producing an intelligent fabric with durable multi-functional activities that can be suitable for various applications including medical, military, bio-separation, bio-sensors, magneto graphic printing, magnetic screens and magnetic filters.  相似文献   

18.
The possibility of reducing the temperature of conventional wool dyeing with an acid levelling dye using ultrasound was studied in order to reach exhaustion values comparable to those obtained with the standard procedure at 98 °C, obtaining dyed samples of good quality. The aim was to develop a laboratory method that could be transferred at industrial level, reducing both the energy consumption and fiber damage caused by the prolonged exposure to high temperature without the use of polluting auxiliary agents.Dyeings of wool fabrics were carried out in the temperature range between 60 °C and 80 °C using either mechanical or ultrasound agitation of the bath and coupling the two methods to compare the results. For each dyeing, the exhaustion curves of the dye bath were determined and the better results of dyeing kinetics were obtained with ultrasound coupled with mechanical stirring. Hence the corresponding half dyeing times, absorption rate constants according to Cegarra-Puente modified equation and ultrasonic efficiency were calculated in comparison with mechanical stirring alone. In the presence of ultrasound the absorption rate constants increased by at least 50%, at each temperature, confirming the synergic effect of sonication on the dyeing kinetics. Moreover the apparent activation energies were also evaluated and the positive effect of ultrasound was ascribed to the pre-exponential factor of the Arrhenius equation. It was also shown that the effect of ultrasound at 60 °C was just on the dye bath, practically unaffecting the wool fiber surface, as confirmed by the results of SEM analysis.Finally, fastness tests to rubbing and domestic laundering yielded good values for samples dyed in ultrasound assisted process even at the lower temperature. These results suggest the possibility, thanks to the use of ultrasound, to obtain a well equalized dyeing on wool working yet at 60 °C, a temperature process strongly lower than 98 °C, currently used in industry, which damages the mechanical properties of the fibers.  相似文献   

19.
As one of the most important coumarin-like dyes, disperse fluorescent Yellow 82 exhibits exceptionally large two-photon effects. Here, it was firstly introduced into the supercritical CO2 dyeing polyester fabrics in this work. Results of the present work showed that the dyeing parameters such as the dyeing time, pressure and temperature had remarkable influences on the color strength of fabrics. The optimized dyeing condition in supercritical CO2 dyeing has been proposed that the dyeing time was 60 min; the pressure was 25 MPa and the temperature was 120 °C. As a result, acceptable products were obtained with the wash and rub fastness rating at 5 or 4–5. The polyester fabrics dyed with fluorescent dyes can be satisfied for the requirement of manufacturing warning clothing. Importantly, the confocal microscopy imaging technology was successfully introduced into textile fields to observe the distribution and fluorescence intensity of disperse fluorescent Yellow 82 on polyester fabrics. As far as we know, this is the first report about supercritical CO2 dyeing polyester fabrics based on disperse fluorescent dyes. It will be very helpful for the further design of new fluorescent functional dyes suitable for supercritical CO2 dyeing technique.  相似文献   

20.
This study synthesized UiO-66, a typical Zr-Metal Organic Framework (MOF), by using an ultrasound-assisted synthesis method to reduce the synthesis time. This method was short-time ultrasound irradiation at the initial stage of the reaction. As compared with average particle size of conventional solvothermal method (=192 nm), averaged particle size by the ultrasound-assisted synthesis method showed particle sizes that were smaller on average, ranging from 56 to 155 nm. In order to compare the relative reaction rates of the solvothermal method and the ultrasound-assisted synthesis method, the cloudiness of the reaction solution in the reactor was observed with a video camera, and the luminance was calculated from the images obtained by the video camera. It was found that the ultrasound-assisted synthesis method showed a faster increase in luminance and shorter induction time than the solvothermal method. The slope of the luminance increase during the transient period was also found to become increase with the addition of ultrasound, which also affects the growth of particles. Observation of the aliquoted reaction solution confirmed that particle growth was faster in the ultrasound-assisted synthesis method than in the solvothermal method. Numerical simulations were also performed using MATLAB ver. 5.5 to analyze the unique reaction field generated by ultrasound. Bubble radius and temperature inside a cavitation bubble was obtained using the Keller-Miksis equation, which reproduces the motion of a single bubble. The bubble radius expanded and contracted repeatedly according to the ultrasound sound pressure, and eventually collapsed. The temperature at the time of collapse was extremely high, exceeding 17,000 K. It was confirmed that the high-temperature reaction field generated by ultrasound irradiation promoted nucleation, leading to a reduction in particle size and induction time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号