首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Composite Interfaces》2013,20(8-9):831-852
Melt blending of maleic anhydride-grafted polypropylene (PPgMA) and organically modified clay nanocomposites was first carried out in a plasticorder. The structure was investigated with x-ray diffraction (XRD) and transmission electron microscopy (TEM). The interfacial interaction between PB3150 compatibilizer and I30 clay surface was altered with the addition of different loadings of PB3150. It was found at the PB3150 compatiblizer gave rise to a high degree of clay dispersion beyond the PB3150/I30 weight ratio of 3. We then also modified polypropylene/organoclay nanocomposites with different loadings of PB3150 on a twin-screw extruder. When the PB3150 loading exceeded 15 wt%, extensive exfoliation of clay was observed. The relative complex viscosity curves also revealed a systematic trend with the extent of exfoliation and showed promise for quantifying the hybrid structure of the nanocomposites. Mechanical properties and thermal stability were determined by tensile and impact tests and thermogravimeric analysis (TGA), respectively. Although high loading of PB3150 leads to better clay dispersion in the polypropylene nanocomposites, it causes deterioration in both mechanical and thermal properties of the hybrid systems.  相似文献   

2.
It has been speculated that the application of nanofluids in real systems could lead to smaller, more compact heat exchangers and reductions in material cost. However, few studies have been conducted which have carefully measured the thermo-physical properties and thermal performance of these fluids as well as examine the system-level effects of using these fluids in traditional cooling systems. In this study, dilute suspensions of 10 nm aluminum oxide nanoparticles in propanol (0.5, 1, and 3 wt%) were investigated. Changes in density, specific heat, and thermal conductivity with particle concentration were measured and found to be linear, whereas changes in viscosity were nonlinear and increased sharply with particle loading. Nanofluid heat transfer performance data were generally commensurate with that measured for the baseline. For the 1 wt% concentration, a small but significant enhancement in the heat transfer coefficient was recorded for 1800 < Re < 2800, which is attributed to an earlier transition to turbulent flow. In the case of high particle loading (i.e. 3 wt%), the thermal performance was observed to deteriorate with respect to the baseline case. Discoloration of the fluid was also observed after being cycled at high flow rates and increased temperature.  相似文献   

3.
Cellulose nanocrystals (CNCs) are promising biomaterials, but their tendency to agglomerate when dried limits their use in several applications. Ultrasonication is commonly used to disperse CNCs in water, bringing enough energy to the suspension to break agglomerates. While the optimized parameters for sonication are now well defined for small volumes of low concentration CNC suspensions, a deeper understanding of the influence of the dispersing process is needed to work with larger volumes, at higher concentrations. Herein, rheology is used to define the distribution and dispersion states upon ultrasonication of a 3.2 wt% CNC suspension. After considering the importance of the measurement sampling volume, the behavior of a more concentrated suspension (6.4 wt%) is examined and compared with a never-dried suspension of the same concentration to validate the dispersion state.  相似文献   

4.
An ultrasonication-assisted synthesis of alcohol-based deep eutectic solvents (DESs) is described. Several DESs were synthesized simultaneously under the same conditions. The prepared DESs were used for the extraction of gingerols from ginger powder via ultrasonication-assisted extraction. Notably, some of the prepared DESs exhibited superior extraction performance than those in traditional organic solvents. The viscosity of the DESs, which was suggested to be typically lower than 100 mPa*s had a critical effect on extraction performance. However, the higher gingerol contents in the extracts did not translate to higher active antioxidant abilities. The extraction temperature was found to be a key determinant of the antioxidant capability of the extracted gingerols while the use of higher temperatures (>50 °C) induced degradation and loss of phenolic compounds during extraction. Response surface methodology was applied for determining the optimal extraction conditions to achieve maximum antioxidant capacity with suitable gingerol content. All compounds used for the preparation of the DESs in this study have been widely employed in cosmetic and pharmaceutical fields. Therefore, the extracts in these DES solutions can be considered for direct application development without further product isolation.  相似文献   

5.
X-ray photoelectron spectroscopy (XPS) has been applied to the characterization of barium-impregnated MFI high-silica zeolites which are used for the conversion of methanol to light alkenes. X-ray photoelectron spectroscopy provided information about the degree of the dispersion of the various barium loadings on the silicalite structure, and this information helped in elucidating the observed relationship between the activity/selectivity of the catalysts and the barium loading. The XPS results also helped in predicting that the performance of the catalyst would be optimized at 4 wt% Ba loading which was found to agree with the catalytic conversion of methanol to light alkenes.  相似文献   

6.
Ultrasound (US)-triggered nicotine release system in a cellulose hydrogel drug carrier was developed with three different cellulose concentrations of 0.45 wt%, 0.9 wt%, and 1.8 wt%. The nicotine-loaded cellulose hydrogels were fabricated by the phase inversion method when the nicotine and cellulose mixture in the 6 wt% LiCl/N, N-dimethylacetamide solvent was exposed to water vapor at room temperature. Nicotine was used as the medicine due to its revealed therapeutic potential for neurodegenerative diseases like Alzheimer's and Parkinson's diseases. The behavior of US-triggered nicotine release from nicotine-cellulose hydrogel was studied at 43 kHz US frequency at the changing US output powers of 0 W, 5 W, 10 W, 20 W, 30 W, and 40 W. The significant US-triggered nicotine release enhancement was noted for the hydrogels made with 0.9 wt% and 1.8 wt% cellulose loading. The matrix made with 0.9 wt% cellulose was exhibited the highest nicotine release at the 40 W US power, and differences in nicotine release at different US powers were noticeable than at 0.45 wt% and 1.8 wt% cellulose loadings. For the three cellulose hydrogel systems, the storage modulus (G′) values at the 0.01 wt% strain rate were dropped from their initial values due to the US irradiation. This reduction was proportionately decreased when the US power was increased. The deconvolution of FTIR spectra of nicotine-loaded cellulose films before and after US exposure was suggested breakage of cellulose-nicotine and cellulose-water in the matrix; thus, the stimulated nicotine release from the cellulose matrix was promoted by the US irradiation.  相似文献   

7.
《Ultrasonics sonochemistry》2014,21(5):1618-1623
Limited resources of conventional fuels such as petrodiesel have led to the search for alternative fuels. Various convention batch/continuous processes for the biodiesel production have been developed before the recent year. All processes are time consuming with high labor cost. Thus, we need a new process for biodiesel production which reduces the reaction time and production cost as well as save the energy. In this work, ultrasonic assisted transesterification of Jatropha curcas oil is carried out in the presence of methanol and potassium hydroxide (KOH) as catalyst, keeping the molar ratio of oil to alcohol 1:5, catalyst concentration 0.75 wt% of oil, ultrasonic amplitude 50% and pulse 0.3 cycle, 7 min reaction time under atmospheric condition. Ultrasonic mixing has increased the rate of transesterification reaction as compare to the mechanical mixing.  相似文献   

8.
This paper describes the preparation of poly(vinyl chloride) (PVC) nanocomposites (NCs) reinforced with modified zirconia (ZrO2) nanoparticles (NPs). The ZrO2 NPs were defined as efficient filler for PVC NCs. For achieving the best dispersion and improvement of properties, the surface of ZrO2 NPs was modified by Bovine Serum Albumin (BSA). Carboxylic acids and amines are important functional groups of BSA which handle the grafting BSA on the surface of ZrO2 NPs. The PVC/ZrO2-BSA NCs were fabricated by incorporation of various amounts of the ZrO2-BSA NPs (3, 6 and 9 wt%) into PVC matrix. All the above processes were accomplished by ultrasonication as a green and environmentally-friendly method. Also, the magnetic and mechanical stirrer was used for the preparation of samples but the results are not suitable and the aggregation was observed which indicated the use of ultrasonic irradiation is the best method for the preparation of NC. The products were characterized by Fourier transform infrared spectroscopy, Transmission electron microscopy, Field emission scanning electron microscopy, X-ray diffraction, Thermogravimetric analysis, Ultraviolet–visible spectroscopy, photoluminescence spectroscopy, energy dispersive X-ray spectroscopy, wettability, and mechanical tests. The achieved PVC/ZrO2-BSA NCs showed high thermal stability, good mechanical, optical and wettability properties compared to the pure PVC. In addition, among the obtained NCs, the PVC/ZrO2-BSA NC 6 wt% showed the best improvement.  相似文献   

9.
The present study reports synthesis and characterization of poly(MMA–co–BA)/ZnO nanocomposites using ultrasound-assisted in-situ emulsion polymerization. Methyl methacrylate (MMA) was copolymerized with butyl acrylate (BA), for enhanced ductility of copolymer matrix, in presence of nanoscale ZnO particles. Ultrasound generated strong micro-turbulence in reaction mixture, which resulted in higher encapsulation and uniform dispersion of ZnO (in native form – without surface modification) in polymer matrix, as compared to mechanical stirring. The nanocomposites were characterized for physical properties and structural morphology using standard techniques such as XRD, FTIR, particle size analysis, UV–Visible spectroscopy, electrical conductivity, TGA, DSC, FE-SEM and TEM. Copolymerization of MMA and BA (in presence of ZnO) followed second order kinetics. Thermal stability (T10% = 324.9 °C) and glass transition temperature (Tg = 67.8 °C) of poly(MMA-co-BA)/ZnO nanocomposites showed significant enhancement (35.1 °C for 1 wt% ZnO and 15.7 °C for 4 wt% ZnO, respectively), as compared to pristine poly(MMA–co–BA). poly(MMA–co–BA)/ZnO (5 wt%) nanocomposites possessed the highest electrical conductivity of 0.192 μS/cm and peak UV absorptivity of 0.55 at 372 nm. Solution rheological study of nanocomposites revealed enhancement in viscosity with increasing ZnO loading. Maximum viscosity of 0.01 Pa-s was obtained for 5 wt% ZnO loading.  相似文献   

10.
The effect of static pressure on acoustic emissions including shock-wave emissions from cavitation bubbles in viscous liquids under ultrasound has been studied by numerical simulations in order to investigate the effect of static pressure on dispersion of nano-particles in liquids by ultrasound. The results of the numerical simulations for bubbles of 5 μm in equilibrium radius at 20 kHz have indicated that the optimal static pressure which maximizes the energy of acoustic waves radiated by a bubble per acoustic cycle increases as the acoustic pressure amplitude increases or the viscosity of the solution decreases. It qualitatively agrees with the experimental results by Sauter et al. [Ultrason. Sonochem. 15, 517 (2008)]. In liquids with relatively high viscosity (~200 mPa s), a bubble collapses more violently than in pure water when the acoustic pressure amplitude is relatively large (~20 bar). In a mixture of bubbles of different equilibrium radius (3 and 5 μm), the acoustic energy radiated by a 5 μm bubble is much larger than that by a 3 μm bubble due to the interaction with bubbles of different equilibrium radius. The acoustic energy radiated by a 5 μm bubble is substantially increased by the interaction with 3 μm bubbles.  相似文献   

11.
The stability along with thermal and rheological characteristics of ionanofluids (INFs) profoundly depend on the protocol of preparation. Therefore, in this work, the effect of ultrasonication time on microstructure, thermal conductivity, and viscosity of INFs containing 0.2 wt% of originally ultra-long multi-walled carbon nanotubes (MWCNTs) and four different ILs, namely 1-propyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-ethyl-3-methylimidazolium thiocyanate, or 1-ethyl-3-methylimidazolium tricyanomethanide, was studied. The INFs were obtained by a two-step method using an ultrasonic probe. The ultrasonication process was performed for 1, 3, 10, or 30 min at a constant nominal power value of 200 W. The obtained results showed that for the shortest sonication time, the highest thermal conductivity enhancement of 12% was obtained. The extended sonication time from 1 to 30 min caused the cutting of MWCNTs and breaking the nanoparticle clusters, leading to a decrease in the average length of the nanotube bundles by approx. 70%. This resulted in a decline in thermal conductivity even by 7.2% and small deviations from the Newtonian behavior of INFs.  相似文献   

12.
This research investigated the synergic effect of graphene nanoplatelets (GNPs) and carbon black (CB) as a blended conductive filler for polymer film used as electrostatic discharge (ESD) packaging materials. Various weight ratios of GNPs/CB and combined filler concentrations were mixed and processed into Polyvinyl Alcohol (PVOH) based film. The surface resistivity and volume resistivity of the resulting film was measured under three different humidity environments. The study found that the composite with GNPs/CB ratios of 10:90 and 30:70 resulted in a sharp drop in surface resistivity by 5–8 orders of magnitude at the filler loading 8-10 wt%. The volume resistivity of the resulting film exhibited steady and consistent ranges within 108–1012 Ω cm across all loadings. The difference in conductivity between surface and volume made the film possible to be used in protecting equipment against electrostatic discharges inside of a package. The high loading of GNPs in hybrid GNPs/CB had no effect on enhancing both surface and volume conductivity of the composite film.  相似文献   

13.
Nanofluid is a colloidal solution of nanosized solid particles in liquids. Nanofluids show anomalously high thermal conductivity in comparison to the base fluid, a fact that has drawn the interest of lots of research groups. Thermal conductivity of nanofluids depends on factors such as the nature of base fluid and nanoparticle, particle concentration, temperature of the fluid and size of the particles. Also, the nanofluids show significant change in properties such as viscosity and specific heat in comparison to the base fluid. Hence, a theoretical model becomes important in order to optimize the nanofluid dispersion (with respect to particle size, volume fraction, temperature, etc.) for its performance. As molecular dynamic simulation is computationally expensive, here the technique of Brownian dynamic simulation coupled with the Green Kubo model has been used in order to compute the thermal conductivity of nanofluids. The simulations were performed for different concentration ranging from 0.5 to 3 vol%, particle size ranging from 15 to 150 nm and temperature ranging from 290 to 320 K. The results were compared with the available experimental data, and they were found to be in close agreement. The model also brings to light important physical aspect like the role of Brownian motion in the thermal conductivity enhancement of nanofluids.  相似文献   

14.
Adding conductive additives to electrospinning solutions has been proven to increase the conductivity of electrospun membranes. The aim of this study was to learn the effect of ionic liquids (ILs) on the polyacrylonitrile membranes conductivity. Three different ionic liquids were used with concentration to 10 wt%. The conductivity of the membranes increases from picoS range without using IL to microS range with adding IL. At concentration 8 wt% ILs the percolation threshold was observed with maximum conductivity of the electrospun membranes. The maximum conductivity was measured to be 2.39 μS/cm.  相似文献   

15.
Hydroxyapatite Nano Sol Prepared via A Mechanochemical Route   总被引:2,自引:0,他引:2  
Well-dispersed sol with crystalline hydroxyapatite (HAp) was obtained directly by milling a mixture comprising Ca(OH)2, an aqueous solution of H3PO4 and a dispersant, an ammonium salt of polyacrylic acid. The average crystallite size of HAp was below 20 nm. Ca/P molar ratio of the product was 1.51 ± 0.04, i.e. Ca deficient from stoichiometric HAp. Minimum apparent viscosity was attained at a dispersant concentration 0.92wt% of sol. An as-milled sol was diluted by a factor 10–2.61 solid wt% to give a Newtonian fluid of 2 mPa s. From the diluted sol, we obtained a few m thick dense film of HAp by dip coating on the slide glass precoated by chitosan.  相似文献   

16.
The chemical effects of the acoustic cavitation generated by ultrasound translates into the production of highly reactive radicals. Acoustic cavitation is widely explored in aqueous solutions but it remains poorly studied in organic liquids and in particular in liquid/solid media. However, several heterogeneous catalysis reactions take place in organic solvents.Thus, we sonicated trimethylene glycol and propylene glycol in the presence of silica particles (SiO2) of different sizes (5–15 nm, 0.2–0.3 µm, 12–26 µm) and amounts (0.5 wt% and 3 wt%) at an ultrasound frequency of 20 kHz to quantify the radicals generated. The spin trap 5,5-dimethyl-1-pyrrolin–N-oxide (DMPO) was used to trap the generated radicals for study by electron paramagnetic resonance (EPR) spectroscopy. We identified the trapped radical as the hydroxyalkyl radical adduct of DMPO, and we quantified it using stable radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) as a quantitation standard. The concentration of DMPO spin adducts in solutions containing silica size 12–26 µm was higher than the solution without particles. The presence of these particles increased the concentration of the acoustically generated radicals by a factor of 1.5 (29 µM for 0.5 wt% of SiO2 size 12–26 µm vs 19 µM for 0 wt%, after 60 min of sonication). Ultrasound produced fewest radicals in solutions with the smallest particles; the concentration of radical adducts was highest for SiO2 particle size 12–26 µm at 0.5 wt% loading, reaching 29 µM after 60 min sonication. Ultrasound power of 50.6 W produced more radicals than 24.7 W (23 µM and 18 µM, respectively, at 30 min sonication). Increased temperature during sonication generated more radical adducts in the medium (26 µM at 75 °C and 18 µM at 61 °C after 30 min sonication). Acoustic cavitation, in the presence of silica, increased the production of radical species in the studied organic medium.  相似文献   

17.
The ultrasonic process has been examined to exfoliate layered materials and upgrade their properties for a variety of applications in different media. Our previous studies have shown that the ultra-sonication treatment in water without chemicals has a positive influence on the physical and electrochemical performance of layered materials and nanoparticles. In this work, we have probed the impact of ultrasonication on the physical properties and the oxygen evolution reaction (OER) of the NiFe LDH materials under various conditions, including suspension concentration (2.5–12.5 mg mL−1), sonication times (3–20 min) and amplitudes (50–90%) in water, in particular, sonication times and amplitudes. We found that the concentration, amplitude and time play significant roles on the exfoliation of the NiFe LDH material. Firstly, the NiFe LDH nanosheets displayed the best OER performance under ultrasonic conditions with the concentration of 10 mg mL−1 (50% amplitude and 15 min). Secondly, it was revealed that the exfoliation of the NiFe LDH nanosheets in a short time (<10 min) or a higher amplitudes (≥80%) has left a cutdown on the OER activity. Comprehensively, the optimum OER activity was displayed on the exfoliated NiFe LDH materials under ultrasonic condition of 60% (amplitude), 10 mg mL−1 and 15 min. It demanded only 250 mV overpotentials to reach 10 mA cm−2 in 1 M KOH, which was 100 mV less than the starting NiFe LDH material. It was revealed from the mechanism of sonochemistry and the OER reaction that, after exfoliation, the promoted OER performance is ascribed to the enriched Fe3+ at the active sites, easier oxidation of Ni2+ to Ni3+, and the strong electrical coupling of the Ni2+ and Fe3+ during the OER process. This work provides a green strategy to improve the intrinsic activity of layered materials.  相似文献   

18.
Few-layer graphene (FLG) nanofluids have received widespread interest in recent years due to their excellent thermal and optical properties. However, the low dispersion stability is one of the main bottlenecks for their commercialization. Ultrasonication is an effective method and almost an essential step to improve the stability of nanofluids. This work aimed to determine the optimal ultrasonication process for preparing stable FLG nanofluids, particularly under the constant ultrasonic energy consumption condition. For this purpose, FLG nanofluids were prepared under various amplitudes (20%–80%) and times (33.75–135 min) and evaluated by both sedimentation and optical spectrum analysis techniques. It was found that ultrasonication treatment at 30% amplitude for 90 min was sufficient for proper dispersion of FLG, and a further increase in the ultrasonication power would not benefit the stability enhancement much. However, for FLG nanofluids prepared at amplitudes higher than 30% under the constant ultrasonic energy consumption condition, their stability deteriorated seriously due to the reduced ultrasonication time, while for FLG nanofluids prepared at 20% amplitude for 135 min, they showed the higher stability, which indicates that the stability of FLG nanofluids is more sensitive to ultrasonication time than power. Therefore, a relatively longer ultrasonication time rather than a higher amplitude is recommended to prepare stable FLG nanofluids for practical applications at given ultrasonic energy consumption.  相似文献   

19.
The behaviour of three high viscosity (4875, 12 125 and 58 560 mPa s), dielectric liquids was investigated at flow rates of 10−10, 10−12 and 10−14 m3 s−1 and the applied voltage range 6–15 kV. In these experiments, due to the low electrical conductivity of the liquids (10−13 S m−1) and therefore the ensuing high electrical relaxation time, classical electrohydrodynamic atomization conditions are not satisfied. Only dripping and unstable jetting were observed at 4875 mPa s. A transition from no jetting to stable microthreading was observed for the 12 125 and 58 560 mPa s samples. The relics accompanying the transition were found to change from discrete droplets to a continuous filament. Stable microthreading, which generates uniform filaments, was obtained for the 12 125 mPa s sample at flow rates 10−10 and 10−12 m3 s−1 and in the case of the 58 560 mPa s sample at all the flow rates investigated. The high viscosity assisted stable microthreading with the filament diameter decreasing with increasing applied voltage and more dramatically decreasing with reducing flow rate.  相似文献   

20.
In the ultrasonic dispersion process, the ultrasonic cavitation effect can seriously affect the dispersion efficiency of magnetorheological polishing fluid (MRPF), but the mechanism remains unclear now. Through considering the continuity equation and Vand viscosity equation of the suspension, a revised cavitation bubble dynamic model in the MRPF was developed and calculated. The effects of presence or absence of solid particles, the volume fraction of solid particles, and viscosity on the cavitation bubble motion characteristics in the MRPF were discussed. Settlement experiments of the MRPF under ultrasonic and mechanical dispersion were observed. Analysis of particle dispersion is made by trinocular biomicroscope and image processing of the microscopic morphology of the MRPF. The results show that the high volume fraction of carbonyl iron particle (CIP) will significantly weaken the cavitation effect, and the low volume fraction of green silicon carbide (GSC) has a negligible effect on the cavitation effect in the MRPF. When the liquid viscosity is greater than or equal to 0.1 Pa·s, it is inconvenient to produce micro-jets in the MRPF. The sedimentation rate of the MRPF prepared by ultrasonic dispersion is lower than mechanical dispersion when the volume fraction of CIP is between 1% and 25%. The dispersion ratio under ultrasonic dispersion is lower than that under mechanical dispersion. The experimental results fit the simulation well. It offers a theoretical basis for exploring the ultrasonic cavitation effect in the industrial application of the MRPF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号