首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A procedure using ultrasonic irradiation is proposed for sulfur removal of a petroleum product feedstock. The procedure involves the combination of a peroxyacid and ultrasound-assisted treatment in order to comply with the required sulfur content recommended by the current regulations for fuels. The ultrasound-assisted oxidative desulfurization (UAOD) process was applied to a petroleum product feedstock using dibenzothiophene as a model sulfur compound. The influence of ultrasonic irradiation time, oxidizing reagents amount, kind of solvent for the extraction step and kind of organic acid were investigated. The use of ultrasonic irradiation allowed higher efficiency for sulfur removal in comparison to experiments performed without its application, under the same reactional conditions. Using the optimized conditions for UAOD, the sulfur removal was about 95% after 9 min of ultrasonic irradiation (20 kHz, 750 W, run at 40%), using hydrogen peroxide and acetic acid, followed by extraction with methanol.  相似文献   

2.
This work investigated the ultrasonic assisted oxidative desulfurization of bunker-C oil with TBHP/MoO3 system. The operational parameters for the desulfurization procedure such as ultrasonic irradiation time, ultrasonic wave amplitude, catalyst initial concentration and oxidation agent initial concentration were studied. The experimental results show that the present oxidation system was very efficient for the desulfurization of bunker-C oil and ~35% sulfur was removed which was dependent on operational parameters. The application of ultrasonic irradiation allowed sulfur removal in a shorter time. The stronger the solvent polarity is, the higher the sulfur removal rate, but the recovery rate of oil is lower. The sulfur compounds in bunker-C oil reacted with TBHP to produce corresponding sulfoxide, and further oxidation produced the corresponding sulfone.  相似文献   

3.
Latest environmental regulations require a very deep desulfurization to meet the ultra-low sulfur diesel (ULSD, 15 ppm sulfur) specifications. Due to the disadvantages of hydrotreating technology on the slashing production conditions, costs and safety as well as environmental protection, the ultrasound-assisted oxidative desulfurization (UAOD) as an alternative technology has been developed. UAOD process selectively oxidizes sulfur in common thiophenes in diesel to sulfoxides and sulfones which can be removed via selective adsorption or extractant. SulphCo has successfully used a 5000 barrel/day mobile “Sonocracking” unit to duplicate on a commercial scale its proprietary process that applies ultrasonics at relatively low temperatures and pressures. The UAOD technology estimate capital costs less than half the cost of a new high-pressure hydrotreater. The physical and chemical mechanisms of UAOD process are illustrated, and the effective factors, such as ultrasonic frequency and power, oxidants, catalysts, phase-transfer agent, extractant and adsorbent, on reaction kinetics and product recovery are discussed in this review.  相似文献   

4.
The activity of Ti-pillared montmorillonite for photocatalytic oxidative desulfurization using 2,5-dimethylthiophene dissolved in n-octane as a model organosulfur compound in gasoline was investigated. Using Ti-pillared montmorillonite and an oil/acetonitrile two-phase extraction, deep desulfurization of sulfur-containing compounds was achieved. During this process, O2 was used as the oxygen source and photoirradiation was achieved by UV light. Using this approach, 97.4% of the sulfur compounds were oxidized and successfully removed from the model gasoline system under mild reaction conditions. Montmorillonite was prepared by sol–gel method and characterized by XRD, N2 absorption and UV–vis spectroscopy. The characterization indicates that Ti component enters the interlayer of montmorillonite, working as an active component in the crystal phase of anatase. Deep desulfurization experiments show that the activity of Ti-pillared montmorillonite is obviously better than P25.  相似文献   

5.
The present review emphasizes the role of hydrodynamic cavitation (HC) and acoustic cavitation in clean and green technologies for selected fuels (of hydrocarbon origins such as gasoline, naphtha, diesel, heavy oil, and crude oil) processing applications including biodiesel production. Herein, the role of cavitation reactors, their geometrical parameters, physicochemical properties of liquid media, liquid oxidants, catalyst loading, reactive oxygen species, and different types of emulsification and formation of radicals, formation as well as extraction of formed by-products are systematically reviewed. Among all types of HC reactors, vortex diode and single hole orifices revealed more than 95 % desulfurization yield and a 20 % viscosity reduction in heavy oil upgrading, while multi-hole orifice (100 holes) and slit Venturi allowed obtaining the best biodiesel production processes in terms of high (%) yield, low cost of treatment, and short processing time (5 min; 99 % biodiesel; 4.80 USD/m3). On the other hand, the acoustic cavitation devices are likely to be the most effective in biodiesel production based on ultrasonic bath (90 min; 95 %; 6.7 $/m3) and desulfurization treatment based on ultrasonic transducers (15 min; 98.3 % desulfurization; 10.8 $/m3). The implementation of HC-based processes reveals to be the most cost-effective method over acoustic cavitation-based devices. Finally, by reviewing the ongoing applications and development works, the limitations and challenges for further research are addressed emphasizing the cleaner production and guidelines for future scientists to assure obtaining comprehensive data useful for the research community.  相似文献   

6.
In this work, ultrasound-assisted oxidative desulfurization (UAOD) of liquid fuels performed with a novel heterogeneous highly dispersed Keggin-type phosphotungstic acid (H3PW12O40, PTA) catalyst that encapsulated into an amino-functionalized MOF (TMU-17-NH2). The prepared composite exhibits high catalytic activity and reusability in oxidative desulfurization of model fuel. Ultrasound-assisted oxidative desulfurization (UAOD) is a new way to performed oxidation reaction of sulfur-contain compounds rapidly, economically, environment-friendly and safely, under mild conditions. Ultrasound waves can be apply as an efficient tool to decrease the reaction time and improves oxidative desulfurization system performance. PTA@TMU-17-NH2 could be completely performed desulfurization of the model oil by 20 mg of catalyst, O/S molar ratio of 1:1 in presence of MeCN as extraction solvent. The obtained results indicated that the conversions of DBT to DBTO2 achieve 98% after 15 min in ambient temperature. In this work, we prepared TMU-17-NH2 and PTA/TMU-17-NH2 composite by ultrasound irradiation for first time and employed in UAOD process. Prepared catalyst exhibit an excellent reusability without PTA leaching and loss of activity.  相似文献   

7.
Very stringent environmental regulations have limited the level of sulfur in diesel, therefore deep desulfurization of fuels is required. For that purpose, the frequently used industrial process is hydrodesulfurization (HDS) which enables effective elimination of sulfur compounds such as mercaptanes, thiols, sulfides, disulfides from diesel oil, but removal of thiophene sulfur compounds (benzothiophene, dibenzothiophene, 4,6 dimethyldibenzothiophene) is insufficient. Ultrasound assisted oxidative desulfurization (UAOD) as one of several new technologies enables performance under mild conditions without use of explosive hydrogen. A higher reactivity of thiophene sulfur compounds during UAOD also provides conversion into highly polar sulfoxides and sulfones that are easily removed by adsorption or extraction. Nowadays, different catalyst/oxidants systems are being studied to improve oxidation reaction efficiency and enhance the mass transfer in the interfacial region. In this paper, the effect of reaction temperature (40–70 °C) and oxidation time (5–150 min) for UAOD of model diesel fuel with a catalyst/oxidants system (acetic acid/hydrogen peroxide) was investigated in a 70 ml batch reactor. Furthermore, the effects of different initial concentrations of dibenzothiophene (DBT) and of ultrasound amplitude were additionally examined to achieve efficient sulfur removal. The obtained results indicated that temperature and US amplitude of 70 °C and 80% respectively were efficient for conversion of DBT (sulfur concentration up to 3976.86 ppm). The results indicate a rise in the yield of sulfones at higher temperatures and subsequent extraction with N,N-dimethylformamide conducted after the process of oxidation at different solvent/oil ratio revealed sulfur removal efficiency of 98.35%.  相似文献   

8.
Near-well blockage caused by asphaltene deposition often occurs during the process of crude oil exploitation. It can reduce the porosity and permeability of reservoirs and seriously affects the migration and exploitation of oil and gas. In this paper, removing near-well blockage caused by asphaltene deposition using sonochemical method is investigated. Six PTZ transducers with different parameters are used to study the deplugging effect. Results show that the optimal ultrasonic frequency and power for plugging removal are 20 kHz and 1000 W respectively. it is found that lower ultrasonic frequency is good for asphaltene deposition plug removal when ultrasonic power is constant; as the power of the sensor increases, the effect of removing the asphaltene deposition plug gets better, ultrasonic power can well make up for the attenuation of ultrasonic energy caused as frequency increases; the effects of removing asphaltene deposition plug for the three cores with different initial gas logging permeability all get worse no matter what type of transducer is used; the effect of asphaltene deposition plug removal for the three cores samples all become better and then tend to be stable as ultrasonic treatment time increases further; considering of reducing construction cost and oil reservoir protection, ultrasonic processing has a lot of unexampled advantages compared with chemical injection, such as good adaptability, low cost, simple operation, non-pollution and benefit for the sustainable development of oil field; affected by the synergistic effect of ultrasonic and chemical agents, the combined treatment effect of ultrasound and chemical agents is significantly better than using ultrasound or chemical agents alone.  相似文献   

9.
Petroleum is a continuous and dynamically stable colloidal system. In the process of oil extraction, transportation, and post-treatment, the stability of the petroleum sol system is easily destroyed, resulting in asphaltenes precipitation that can make pore throat, oil wells, and pipelines blocked, thereby damaging the reservoir and reducing oil recovery. In this paper, removing near-well plugging caused by asphaltene deposition with high-power ultrasound is investigated. Six PZT transducers with different parameters were used to carry out the experimental study. Results show that ultrasonic frequency is one important factor for removing colloidal precipitation plugging in cores, it could not be too high nor too low. The optimum ultrasonic frequency is 25 kHz; Selecting transducers with a higher power is an effective way to improve the removal efficiency. The optimum ultrasonic power is 1000 W. With the increase of ultrasonic treatment time, the recovery rate reaches the maximum and tends to be stable. ultrasonic processing time should be controlled within 120 min. Besides, three methods — ultrasonic treatment alone, chemical injection alone, and ultrasound-chemical method — for removing colloidal precipitation plugging are compared. Results indicate that the ultrasound-assisted chemical method is better than chemical injection alone or ultrasonic treatment alone to remove colloidal sediment in the core. Finally, the mechanism of the ultrasonic deplugging technique is analyzed from three aspects: cavitation effect, the thermal effect, and mechanical vibration.  相似文献   

10.
In the present study, heavy oil viscosity reduction in Daqing oil field was investigated by using an ultrasonic static mixer. The influence of the ultrasonic power on the viscosity reduction rate was investigated and the optimal technological conditions were determined for the ultrasonic treatment. The mechanism for ultrasonic viscosity reduction was analyzed. The flow characteristics of heavy oil in the mixer under the effect of cavitation were investigated using numerical modeling, and energy consumptions were calculated during the ultrasonic treatment and vis-breaking processes. The experimental results indicated that the ultrasonic power made the largest impact on the viscosity reduction rate, followed by the reaction time and temperature. The highest viscosity reduction rate was 57.34%. Vacuole was migrated from the axis to the wall along the fluid, accelerating the two-phase transmission and enhancing the radial flow of the fluid, which significantly improved the ultrasonic viscosity reduction. Compared to the vis-breaking process, the energy consumption of ultrasonic treatment process was 43.03% lower when dealing with the same quality heavy oil. The optimal process conditions were found to be as follows: ultrasonic power of 1.8 kW, reaction time of 45 min and reaction temperature of 360 °C. The dissociation of the molecules of heavy oil after ultrasonication has been checked. After being kept at room temperature 12 days, some light components were produced by the cavitation cracking, so the viscosity of the residual oil could not return to that of the original residual oil, which meant that the “cage effect” was not reformed.  相似文献   

11.
Recently, environmental pollution has increased significantly due to petroleum-based fuels widely used in vehicles. This environmental pollution is mainly due to the acidic SO2 gas generated by the combustion of fuels and emitted into the atmosphere. SO2 gas causes not only acid rain but also corrosion of metal parts of engines in vehicles. In addition, it functions as a catalyst poison in catalytic converters in exhaust system. Due to these damages, strict regulations have been introduced to reduce the amount of sulfur in fuels. As of 2005, the permissible amount of sulfur in diesel fuels in Europe and America has been limited to 10 and 15 ppm by weight, respectively.Due to the decreasing oil reserves in the world, high viscosity petroleums containing high sulfur and heavier fractions (i.e., low-quality oils) are increasing, thus making desulfurization difficult and leading to high costly process. Since time and economic loss are very important today, these two terms have to be reduced to a minimum. Recently, ultrasound wave in ODS shown as an alternative to HDS is utilized to further increase desulfurization in shorter times. Ultrasound wave locally creates high temperatures and high pressures (hot-spot theory) in liquid, causing the desulfurization reaction to accelerate further.In this review, the advantages and difficulties of oxidative desulfurization, the economics of ultrasound-assisted oxidative desulfurization are summarized and recommendations for improving the process are presented.  相似文献   

12.
With the reduction of crude oil throughout the world, enhance oil recovery technology has become a major oil research topics, which can greatly increase the recovery ratio of the crude oil before the dawning of renewable energy era. Near-well ultrasonic processing technology, as one new method, has attracted more attention for Enhanced Oil Recovery due to its low cost, good applicability and no environmental pollution in recent rears. There are two important relevant aspects about Near-well ultrasonic processing technology: (a) how to enhance the oil flow through the rocks into the pumping pool and (b) how to reduce the oil viscosity so that it can be easier to pump. Therefore, how to design a high-power ultrasonic equipment with excellent performance is crucial for Near-well ultrasonic processing technology. In this paper, recent new high-power ultrasonic transducers for Near-well ultrasonic processing technology are summarized. Each field application of them are also given. The purpose of this paper is to provide reference for the further development of Near-well ultrasonic processing technology.With the reduction of crude oil throughout the world, enhance oil recovery technology has become a major oil research topics, which can greatly increase the recovery ratio of the crude oil before the dawning of renewable energy era. Near-well ultrasonic processing technology, as one new method, has attracted more attention for Enhanced Oil Recovery due to its low cost, good applicability and no environmental pollution in recent rears. There are two important relevant aspects about Near-well ultrasonic processing technology: (a) how to enhance the oil flow through the rocks into the pumping pool and (b) how to reduce the oil viscosity so that it can be easier to pump. Therefore, how to design a high-power ultrasonic equipment with excellent performance is crucial for Near-well ultrasonic processing technology. In this paper, recent new high-power ultrasonic transducers for Near-well ultrasonic processing technology are summarized. Each field application of them are also given. The purpose of this paper is to provide reference for the further development of Near-well ultrasonic processing technology  相似文献   

13.
Crude petroleum oils are complex mixtures of different compounds (mainly organic), which are obtained from an extensive range of different geological sources. The fluorescence of crude petroleum oils derives largely from the aromatic hydrocarbon fraction, and this fluorescence emission is strongly influenced by the chemical composition (e.g., fluorophore and quencher concentrations) and physical characteristics (e.g., viscosity and optical density) of the oil. The fluorescence spectroscopy (FS) is increasingly used in petroleum technology due the availability of better optical detection techniques, because FS offers high sensitivity, good diagnostic potential, and relatively simple instrumentation. In this work we analyzed crude petroleum at different dilution in Nujol, a transparent mineral oil. The main objective of this work was to verify the possibility to measure crude oil emission spectroscopic without use of volatile solvents. The mixtures of nujol with different -crude oil concentrations were measured with a 10 mm optical path cuvette thus simplifying the fluorescence spectroscopy signal detection. The emission spectra were obtained by exciting the samples with a 400 W Xenon lamp at 350 nm, 450 nm and 532 nm. The emissions of the samples were collected perpendicularly with the excitation axis.  相似文献   

14.
This study presents an application of ultrasonic technology in the high voltage liquid insulation domain towards the reduction of pour point of vegetable oil samples for the utilization of vegetable oils as liquid insulation in cold climate areas on power transformers. Pour point reduction has been achieved by processing the vegetable oil samples by using ultrasonic treatment process with 100 W and 30 kHz ultrasonic waves for various exposure times of 15, 30, 45 and 60 min. Edible vegetable oils such as sunflower oil, palm oil, sesame oil and non edible vegetable oils such as honge oil, neem oil and punna oil are considered as two categories of vegetable oils for this experimental investigation. Ultrasonic treatment process results in the reduction of pour point of vegetable oils to meet out the standard value of pour point for liquid insulation as per IEEE Standard C57.147, 2018. A significant reduction in pour point temperature of vegetable oil samples have been obtained with an increased exposure time. The obtained variations in pour point after exposure with ultrasonic waves may be due to the possible changes in crystallization kinetics of fatty acids components of vegetable oil samples due to energy input of ultrasonic waves. The experimental results have given a way towards the positive encouragement and development with ultrasonic treatment for achieving low pour point vegetable oils as liquid insulation in power transformers for applications on cold climatic areas.  相似文献   

15.
The present work deals with ultrasound assisted enzymatic degumming (UAED) of crude soybean oil quantifying the extent of degumming (EOD), cavitational yield and synergistic index (f) for the combination approaches. The effect of different operating parameters such as enzyme loading, pH, presence of water, temperature and ultrasonic power on the EOD has been investigated. Ultrasound combined with enzyme at loading of 2.0 ml/L resulted in EOD as 92.2% under ambient conditions. Addition of water (5%) in combination with ultrasound and enzyme at 2.0 ml/L loading and pH of 5 resulted in maximum EOD (98.4%) in 120 min of treatment. The extent of phospholipid separation was also observed to be dependent on the power dissipation and maximum phospholipids separation was obtained at 100 W. Scale-up studies were performed at 500 ml and 1 L operating volume under optimized conditions of 2.0 ml/L as the enzyme loading, pH of 5, 5% water addition and ultrasonic power of 100 W where 93.63% and 91.15% phospholipid separation respectively was obtained. The effects of ultrasonic treatment were also quantified in terms of the acid value reduction and oxidative stability for the processed oil. It was demonstrated that suitable reduction in acid value (final value less than 1) and oxidative stability (TOTOX less than 4) is effectively obtained using UAED. Overall the approach of UAED was established to show much higher efficacy for soybean oil processing as compared to only ultrasound or only enzymatic treatment.  相似文献   

16.
Coalescence of water droplets in crude oil has been effectively promoted by chemical demulsifiers integrated with ultrasound. Temporary images of water droplets in W/O emulsions were directly monitored using a metallurgical microscope. Water droplets achieved expansion of 118% at 40 min ultrasonic irradiation time under well mixing conditions. However, water droplets in heavy crude oil undergo less aggregation than those in light crude oil, due to resistance of mobility in highly viscous fluid. In the absence of chemical demulsifiers, water droplets enveloped by native surfactants appeared to aggregate arduously because of occurrence of interfacial tension gradients. Influential significance analyses have been executed by a factorial design method on operation variables, including acoustic power intensity, operation temperature, ultrasonic irradiation time and chemical demulsifier dosages. In this work, the outcomes indicate that the optimal operating conditions for desalination of crude oil assisted by ultrasound were as follows: acoustic power intensity = 300 W, operation temperature = 90℃, ultrasonic irradiation time = 75 min and chemical demulsifier dosages = 54 mg/L. Besides, it was found that the most influential importance of operation parameter was temperature, followed with acoustic power intensity, ultrasonic irradiation time and chemical demulsifier dosages.  相似文献   

17.
The effects of bleaching using high power ultrasound (20 kHz) on the quality of olive oil were considered in this study, in order to verify the modifications that can occur in fatty acid composition and minor compounds. During the treatment of olive oil under ultrasonic waves, a rancid odour has been detected. Treated olive oils show no significant changes in their chemical composition but the presence of some volatile compounds, due to ultrasonic treatment. Some off-flavour compounds (hexanal, hept-2-enal and 2(E),4(E)-decadienal) resulting from the sonodegradation of olive oil have been identified. A wide variety of analytical techniques (GLC, HPLC and GC/MS) were used to follow the quality of bleached olive oils with ultrasonic waves by the determination of the amounts of certain minor compounds such as sterols and tocopherols. Steradienes, resulting from the dehydration of sterols, were detected with small quantities especially in severe conditions of sonication. Solid phase micro-extraction (SPME) coupled to gas chromatography was known to be a sensitive technique to follow changes in the oxidative state of vegetable oils by measuring the amount of volatile materials produced during the refining process.  相似文献   

18.
Separating produced water is a key part of production processing for most crude oils. It is required for quality reasons, and to avoid unnecessary transportation costs and prevent pipework corrosion rates caused by soluble salts present in the water. A complicating factor is that water is often present in crude oil in the form of emulsions. Experiments were performed to evaluate the performance of ultrasonic fields in demulsifying crude oil emulsions using novel pipe-form equipment. A horn-type piezoelectric ultrasonic transducer with a frequency of 20 kHz and power ranging from 80 W to 1000 W was used for experimental purposes. The influences of the intensity of ultrasonic fields, ultrasonic irradiation time, and the initial water content of crude oils were evaluated to establish the rate of water segregation from oil. The experiments applied ultrasonic-field intensities of 0.25 W/cm3, 0.5 W/cm3, 0.75 W/cm3 and 1 W/cm3 to synthetic emulsions with 10%, 15%, 20%, and 25% of the water in crude oil. Crude oil demulsification occurred for each ultrasonic field intensity tested for all the samples tested. Function β involving adhesion coefficients was expressed in terms of wave-field intensity and initial concentration of water in each of the three crude oil samples tested. The experiments demonstrated that despite the absence of any chemical demulsifier involved, water separation caused by applying ultrasonic fields was effective and occurred rapidly. As the intensity of the ultrasonic field applied increased, the amount of water segregated from crude oil also increased. Subjected to constant field intensity, higher initial water cuts (up to 15% or so) in the crude oil samples and higher ultrasonic irradiation times, resulted in greater segregation of water from crude oil in percentage terms. However, in samples with initial water cuts of 20+% long irradiation times (~5 min), resulted in a decline in water separation compared to 2-min tests. Ultrasonic field treatments offer commercially-viable and environmentally-friendly alternatives to treatments using chemical demulsifiers as they reduce desalination requirements of wastewater.  相似文献   

19.
In this study, the three-dimensional network system formed by rice bran wax (RBW) was used as the internal structure, and the external structure formed by soybean protein isolate (SPI) and phosphatidylserine (PS) was added on the basis of the internal structure to prepare walnut oil oleogel (SPI-PS-WOG). Ultrasonic treatment was applied to the mixed solution to make SPI-PS-WOG, on the basis, the effects of ultrasonic treatment on SPI-PS-WOG were investigated. The results showed that both β and β’ crystalline forms were present in all SPI-PS-WOG samples. When the ultrasonic power was 450 W, the first weight loss peak in the thermogravimetric (TGA) curve appeared at 326 °C, which was shifted to the right compared to the peak that occurred when the ultrasonic power was 0 W, indicating that the thermal stability of the SPI-PS-WOG was improved by the ultrasonic treatment. Moreover, when the ultrasonic power was 450 W, the oil holding capacity (OHC) reached 95.3 %, which was the best compared with other groups. Both confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) showed that the ultrasonic treatment of appropriate power succeeded in making the SPI-PS-WOG samples more evenly dispersed in the internal structure and denser in the external structure. In terms of oxidative stability, it was found that the peroxide value of SPI-PS-WOG remained at 9.8 mmol/kg oil for 50 days under 450 W ultrasonic power treatment, which was significantly improved compared with liquid walnut oil (WO). These results provide a new idea for the preparation of oleogels, and also lay a theoretical foundation for the application of ultrasonic treatment in oleogels.  相似文献   

20.
In this paper desalting/dehydration process of crude oil by ultrasonic irradiation in a novel batch standing-wave resonator reactor is studied both theoretically and experimentally. The effect of main parameters including ultrasonic irradiation parameters, namely irradiation input power and irradiation time, and also operating parameters, such as temperature and injected water, on the removal efficiencies of salt and water is examined. The obtained results demonstrate that finding the optimum values of the above mentioned parameters is important to prevent a significant decrease in the removal efficiencies of water and especially salt. Thus, crude oil was subjected to optimal ultrasonic irradiation with an input power of 57.7 W, and irradiation time of 6.2 min at temperature of 100 °C. The injected water to dissolve the salt of crude oil was 7 vol.%. Also, the applied settling time and dosage of chemical demulsifier were 60 min and 2 ppm, respectively. Under these optimum conditions the removal efficiencies of the desalting/dehydration process were 84% and 99.8%, respectively, which are suitable for refineries.Also, based on the optimal experimental data, two inferential estimators are developed to obtain the relationships between the salt and water removal efficiencies, and input energy density. These empirical relationships can offer a proper estimation for the salt and water removal efficiencies with irradiation input energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号