首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phosphoinositide-dependent protein kinase-1 (PDK1) is a Ser/Thr kinase which phosphorylates and activates members of the AGC kinase group known to control processes such as tumor cell growth, protection from apoptosis, and tumor angiogenesis. In this paper, CoMFA and CoMSIA studies were carried out on a training set of 56 conformationally rigid indolinone inhibitors of PDK1. Predictive 3D QSAR models, established using atom fit alignment rule based on crystallographic-bound conformation, had cross-validated (r cv2) values of 0.738 and 0.816 and non-cross-validated (r ncv2) values of 0.912 and 0.949 for CoMFA and CoMSIA models, respectively. The predictive ability of the CoMFA and CoMSIA models was determined using a test set of 14 compounds, which gave predictive correlation coefficients (r pred2) of 0.865 and 0.837, respectively. Structure-based interpretation of the CoMFA and CoMSIA field properties provided further insights for the rational design of new PDK1 inhibitors. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
In this study we designed novel substituted benzimidazole derivatives and predicted their absorption, distribution, metabolism, excretion and toxicity (ADMET) properties, based on a predictive 3D QSAR study on 132 substituted benzimidazoles as AngII–AT1 receptor antagonists. The two best predicted compounds were synthesized and evaluated for AngII–AT1 receptor antagonism. Three different alignment tools for comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used. The best 3D QSAR models were obtained using the rigid body (Distill) alignment method. CoMFA and CoMSIA models were found to be statistically significant with leave-one-out correlation coefficients (q2) of 0.630 and 0.623, respectively, cross-validated coefficients (r2cv) of 0.651 and 0.630, respectively, and conventional coefficients of determination (r2) of 0.848 and 0.843, respectively. 3D QSAR models were validated using a test set of 24 compounds, giving satisfactory predicted results (r2pred) of 0.727 and 0.689 for the CoMFA and CoMSIA models, respectively. We have identified some key features in substituted benzimidazole derivatives, such as lipophilicity and H-bonding at the 2- and 5-positions of the benzimidazole nucleus, respectively, for AT1 receptor antagonistic activity. We designed 20 novel substituted benzimidazole derivatives and predicted their activity. In silico ADMET properties were also predicted for these designed molecules. Finally, the compounds with best predicted activity were synthesized and evaluated for in vitro angiotensin II–AT1 receptor antagonism.  相似文献   

3.
Abstract

This study has investigated docking-based 3D quantitative structure–activity relationships (QSARs) for a range of quinoline carboxylic acid derivatives by comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). A docking study has shown that most of the compounds formed H-bonds with Arg136 and Gln47, which have already been shown to be essential for the binding of ligands at the active site of the hydroorotate dehydrogenase adenovirus (hDHODH). Bioactive conformations of all the molecules obtained from the docking study were used for the 3D QSAR study. The best CoMFA and CoMSIA models were obtained for the training set and were found to be statistically significant, with cross-validated coefficients (q2 ) of 0.672 and 0.613, r2 cv of 0.635 and 0.598 and coefficients of determination (r2 ) of 0.963 and 0.896, respectively. Both models were validated by a test set of 15 compounds, giving satisfactory predicted correlation coefficients (r2 pred) of 0.824 and 0.793 for the CoMFA and CoMSIA models, respectively. From the docking-based 3D QSAR study we designed 34 novel quinoline-based compounds and performed structure-based virtual screening. Finally, in silico pharmacokinetics and toxicities were predicted for 24 of the best docked molecules. The study provides valuable information for the understanding of interactions between hDHODH and the novel compounds.  相似文献   

4.
5.
Selective inhibition of phosphodiesterase 2 (PDE2) in cells where it is located elevates cyclic guanosine monophosphate (cGMP) and acts as novel analgesic with antinociceptive activity. Three-dimensional quantitative structure–activity relationship (QSAR) studies for pyrazolodiazepinone inhibitors exhibiting PDE2 inhibition were performed using comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA) and Topomer CoMFA, and two-dimensional QSAR study was performed using a Hologram QSAR (HQSAR) method. QSAR models were generated using training set of 23 compounds and were validated using test set of nine compounds. The optimum partial least squares (PLS) for CoMFA-Focusing, CoMSIA-SDH, Topomer CoMFA and HQSAR models exhibited good ‘leave-one-out’ cross validated correlation coefficient (q2) of 0.790, 0.769, 0.840 and 0.787, coefficient of determination (r2) of 0.999, 0.964, 0.979 and 0.980, and high predictive power (r2pred) of 0.796, 0.833, 0.820 and 0.803 respectively. Docking studies revealed that those inhibitors able to bind to amino acid Gln859 by cGMP binding orientation called ‘glutamine-switch’, and also bind to the hydrophobic clamp of PDE2 isoform, could possess high selectivity for PDE2. From the results of all the studies, structure–activity relationships and structural requirements for binding to active site of PDE2 were established which provide useful guidance for the design and future synthesis of potent PDE2 inhibitors.  相似文献   

6.
Three dimensional (3D) quantitative structure-activity relationship studies of 37 B-Raf inhibitors, pyrazole-based derivatives, were performed. Based on the co-crystallized compound (PDB ID: 3D4Q), several alignment methods were utilized to derive reliable comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models. Receptor-guided alignment with quantum mechanics/molecular mechanics (QM/MM) minimization led to the best CoMFA model (q 2 = 0.624, r 2 = 0.959). With the same alignment, a statistically reliable CoMSIA model with steric, H-bond acceptor, and hydrophobic fields was also derived (q 2 = 0.590, r 2 = 0.922). Both models were validated with an external test set, which gave satisfactory predictive r 2 values of 0.926 and 0.878, respectively. Contour maps from CoMFA and CoMSIA models revealed important structural features responsible for increasing biological activity within the active site and explained the correlation between biological activity and receptor-ligand interactions. New fragments were identified as building blocks which can replace R1-3 groups through combinatorial screening methods. By combining these fragments a compound with a high bioactivity level prediction was found. These results can offer useful information for the design of new B-Raf inhibitors.  相似文献   

7.
Quantitative structure–activity relationship (QSAR) studies were conducted on an in-house database of cytochrome P450 enzyme 1A2 inhibitors using the comparative molecular field analysis (CoMFA), comparative molecular similarity analysis (CoMSIA) and hologram QSAR (HQSAR) approaches. The database consisted of 36 active molecules featuring varied core structures. The model based on the naphthalene substructure alignment incorporating 19 molecules yielded the best model with a CoMFA cross validation value q2 of 0.667 and a Pearson correlation coefficient r2 of 0.976; a CoMSIA q2 value of 0.616 and r2 value of 0.985; and a HQSAR q2 value of 0.652 and r2 value of 0.917. A second model incorporating 34 molecules aligned using the benzene substructure yielded an acceptable CoMFA model with q2 value of 0.5 and r2 value of 0.991. Depending on the core structure of the molecule under consideration, new CYP1A2 inhibitors will be designed based on the results from these models.  相似文献   

8.
In the present work, three-dimensional quantitative structure–activity relationship (3-D QSAR) studies on a set of 70 anthranilimide compounds has been performed using docking-based as well as substructure-based molecular alignments. This resulted in the selection of more statistically relevant substructure-based alignment for further studies. Further, molecular models with good predictive power were derived using CoMFA (r 2?=?0.997; Q 2?=?0.578) and CoMSIA (r 2?=?0.976; Q 2?=?0.506), for predicting the biological activity of new compounds. The so-developed contour plots identified several key features of the compounds explaining wide activity ranges. Based on the information derived from the CoMFA contour maps, novel leads were proposed which showed better predicted activity with respect to the already reported systems. Thus, the present study not only offers a highly significant predictive QSAR model for anthranilimide derivatives as glycogen phosphorylase (GP) inhibitors which can eventually assist and complement the rational drug-design attempts, but also proposes a highly predictive pharmacophore model as a guide for further development of selective and more potent GP inhibitors as anti-diabetic agents.  相似文献   

9.
Three-dimensional quantitative structure–activity relationship (3D-QSAR) modelling was conducted on a series of leucine-rich repeat kinase 2 (LRRK2) antagonists using CoMFA and CoMSIA methods. The data set, which consisted of 37 molecules, was divided into training and test subsets by using a hierarchical clustering method. Both CoMFA and CoMSIA models were derived using a training set on the basis of the common substructure-based alignment. The optimum PLS model built by CoMFA and CoMSIA provided satisfactory statistical results (q2 = 0.589 and r2 = 0.927 and q2 = 0.473 and r2 = 0.802, respectively). The external predictive ability of the models was evaluated by using seven compounds. Moreover, an external evaluation set with known experimental data was used to evaluate the external predictive ability of the porposed models. The statistical parameters indicated that CoMFA (after region focusing) has high predictive ability in comparison with standard CoMFA and CoMSIA models. Molecular docking was also performed on the most active compound to investigate the existence of interactions between the most active inhibitor and the LRRK2 receptor. Based on the obtained results and CoMFA contour maps, some features were introduced to provide useful insights for designing novel and potent LRRK2 inhibitors.  相似文献   

10.
The 3D QSAR analysis using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques is performed on novel nalidixic acid based 1,2,4-triazole derivatives suggested earlier as antibacterial agents. The CoMFA and CoMSIA models employed for a training set of 28 compounds gives reliable values of Q2 (0.53 and 0.52, respectively) and R2 (0.79 and 0.85, respectively). The contour maps produced by the CoMFA and CoMSIA models are used to determine a three-dimensional quantitative structure-activity relationship. Based on the 3D QSAR contours new molecules with high predicted activities are designed. In addition, surflex-docking is performed to confirm the stability of predicted molecules in the receptor.  相似文献   

11.
The inhibition of β-secretase (BACE1) is currently the main pharmacological strategy available for Alzheimer’s disease (AD). 2D QSAR and 3D QSAR analysis on some cyclic sulfone hydroxyethylamines inhibitors against β-secretase (IC50: 0.002–2.75 μM) were carried out using hologram QSAR (HQSAR), comparative molecular field analysis (CoMFA), and comparative molecular similarity indices analysis (CoMSIA) methods. The best model based on the training set was generated with a HQSAR q2 value of 0.693 and r2 value of 0.981; a CoMFA q2 value of 0.534 and r2 value of 0.913; and a CoMSIA q2 value of 0.512 and r2 value of 0.973. In order to gain further understand of the vital interactions between cyclic sulfone hydroxyethylamines and the protease, the analysis was performed by combining the CoMFA and CoMSIA field distributions with the active sites of the BACE1. The final QSAR models could be helpful in the design and development of novel active BACE1 inhibitors.  相似文献   

12.

Abstract  

Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) based on the docked conformation were performed for 24 pyrazinone derivatives. All compounds were docked into the wild-type HIV-1 RT binding pocket and the lowest-energy docked configurations were used to construct the 3D QSAR models. The CoMFA and CoMSIA models enable good prediction of inhibition by the pyrazinones, with r\textcv2 r_{\text{cv}}^{2}  = 0.703 and 0.735. Results obtained from CoMFA and CoMSIA based on the docking conformation of the pyrazinones are, therefore, powerful means of elucidating the mode of binding of pyrazinones and suggesting the design of new potent NNRTIs.  相似文献   

13.
Checkpoint kinase 1 (Chk1) is a promising target for the design of novel anticancer agents. In the present work, molecular docking simulations and three-dimensional quantitative structure–activity relationship (3D-QSAR) studies were performed on pyridyl aminothiazole derivatives as Chk1 inhibitors. AutoDock was used to determine the probable binding conformations of all the compounds inside the active site of Chk1. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models were developed based on the docking conformations and alignments. The CoMFA model produced statistically significant results with a cross-validated correlation coefficient (q2) of 0.608 and a coefficient of determination (r2) of 0.972. The reliable CoMSIA model with q2 of 0.662 and r2 of 0.970 was obtained from the combination of steric, electrostatic and hydrogen bond acceptor fields. The predictive power of the models were assessed using an external test set of 14 compounds and showed reasonable external predictabilities (r2pred) of 0.668 and 0.641 for CoMFA and CoMSIA models, respectively. The models were further evaluated by leave-ten-out cross-validation, bootstrapping and progressive scrambling analyses. The study provides valuable information about the key structural elements that are required in the rational design of potential drug candidates of this class of Chk1 inhibitors.  相似文献   

14.

As per the World Health Organization (WHO), cancer is the second most leading cause of death after cardiovascular diseases in worldwide with around 9.88 million total new cases and 1.08 million were observed due to skin cancer in 2018. Amongst two types of skin cancer, progression of melanoma cancer is increasing day by day due to the environmental changes than non-melanoma cancer. Most of B-Raf mutation, specifically B-RafV600E, is responsible for the progression of the melanoma cancer. Here, various 3D-QSAR techniques like comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), molecular hologram QSAR (HQSAR) and topomer CoMFA were used to design novel B-Raf inhibitors by using 28 synthetic B-Raf inhibitors. Except for topomer CoMFA model, remaining models were generated by three different alignment methods in which distil-based alignment method was found best and gave prominent statistical values. After performing N-fold statistical validation, in CoMFA, q2, r2 and r2pred values were found to be 0.638, 0.969 and 0.848, respectively. Similarly, q2, r2 and r2pred values were found to be 0.796, 0.978 and 0.891 in CoMSIA (SHD) and 0.761, 0.973 and 0.852 in CoMSIA (SH) by N-fold statistical validation. In HQSAR analysis, statistical values were found for q2 as 0.984, r2 as 0.999 and r2pred as 0.634 with 97 as best hologram length (BHL). The results of topomer CoMFA showed the q2 value of 0.663 and the r2 value of 0.967. Important features of purinylpyridine were identified by contour map analysis of all 3D-QSAR techniques, which could be useful to design the novel molecules as B-Raf inhibitors for the treatment of melanoma cancer.

  相似文献   

15.
The urgent need for novel HCV antiviral agents has provided an impetus for understanding the structural requisites of NS5B polymerase inhibitors at the molecular level. Toward this objective, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) of 67 HCV NS5B polymerase inhibitors were performed using two methods. First, ligand-based 3D QSAR studies were performed based on the lowest energy conformations employing the atom fit alignment method. Second, receptor-based 3D QSAR models were derived from the predicted binding conformations obtained by docking all NS5B inhibitors at the allosteric binding site of NS5B (PDB ID: 2dxs). Results generated from the ligand-based model were found superior (r2cv values of 0.630 for CoMFA and 0.668 for CoMSIA) to those obtained by the receptor-based model (r2cv values of 0.536 and 0.561 for CoMFA and CoMSIA, respectively). The predictive ability of the models was validated using a structurally diversified test set of 22 compounds that had not been included in a preliminary training set of 45 compounds. The predictive r2 values for the ligand-based CoMFA and CoMSIA models were 0.734 and 0.800, respectively, while the corresponding predictive r2 values for the receptor-based CoMFA and CoMSIA models were 0.538 and 0.639, respectively. The greater potency of the tryptophan derivatives over that of the tyrosine derivatives was interpreted based on CoMFA steric and electrostatic contour maps. The CoMSIA results revealed that for a NS5B inhibitor to have appreciable inhibitory activity it requires hydrogen bond donor and acceptor groups at the 5-position of the indole ring and an R substituent at the chiral carbon, respectively. Interpretation of the CoMFA and CoMSIA contour maps in context of the topology of the allosteric binding site of NS5B provided insight into NS5B-inhibitor interactions. Taken together, the present 3D QSAR models were found to accurately predict the HCV NS5B polymerase inhibitory activity of structurally diverse test set compounds and to yield reliable clues for further optimization of the benzimidazole derivatives in the data set.  相似文献   

16.
Three-dimension quantitative structure activity relationship (3D-QSAR) was one of the major statistical techniques to investigate the correlation of biological activity with structural properties of candidate molecules, and the accuracy of statistic greatly depended on molecular alignment methodology. Exhaustive conformational search and successful conformational superposition could extremely improve the predictive accuracy of QSAR modeling. In this work, we proposed a solution to optimize QSAR prediction by multiple-conformational alignment methods, with a set of 40 flexible PTP1B inhibitors as case study. Three different molecular alignment methods were used for the development of 3D-QSAR models listed as following: (1) docking-based alignment (DBA); (2) pharmacophore-based alignment (PBA) and (3) co-crystallized conformer-based alignment (CCBA). Among these three alignments, it was indicated that the CCBA was the best and the fastest strategy in 3D-QSAR development, with the square correlation coefficient (r2) and cross-validated squared correlation coefficient (q2) of comparative molecular field analysis (CoMFA) were 0.992 and 0.694; the r2 and q2 of comparative molecular similarity indices analysis (CoMSIA) were 0.972 and 0.603, respectively. The alignment methodologies used here not only generated a robust QSAR model with useful molecular field contour maps for designing novel PTP1B inhibitors, but also provided a solution for constructing accurate 3D-QSAR model for various disease targets. Undoubtedly, such attempt in QSAR analysis would greatly help us to understand essential structural features of inhibitors required by its target, and so as to discover more promising chemical derivatives.  相似文献   

17.
The Aurora proteins are critical regulators of major mitotic events and attractive targets for anticancer therapy. 3D‐QSAR studies based on molecular docking were performed on a dataset of 40 4‐aminoquinazolines compounds. The CoMSIA model produced significantly better results than CoMFA model, with q2=0.652 and r2=0.991. The contours analysis provides useful information about the structural requirements for 4‐aminoquinazolines for inhibiting Aurora B. Scaffold hopping method was used to generate new structures based on the maximum common substructure of the training and test set compounds. The ADMET property, binding affinity and inhibitory activity of the new designed compounds were predicted, respectively. Finally 16 compounds were identified as the novel inhibitors for Aurora B kinase.  相似文献   

18.
Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) based on three-dimensional quantitative structure–activity relationship (3D-QSAR) studies were conducted on a series (39 molecules) of peptidyl vinyl sulfone derivatives as potential Plasmodium Falciparum cysteine proteases inhibitors. Two different methods of alignment were employed: (i) a receptor-docked alignment derived from the structure-based docking algorithm GOLD and (ii) a ligand-based alignment using the structure of one of the ligands derived from a crystal structure from the PDB databank. The best predictions were obtained for the receptor-docked alignment with a CoMFA standard model (q 2 = 0.696 and r 2 = 0.980) and with CoMSIA combined electrostatic, and hydrophobic fields (q 2 = 0.711 and r 2 = 0.992). Both models were validated by a test set of nine compounds and gave satisfactory predictive r 2 pred values of 0.76 and 0.74, respectively. CoMFA and CoMSIA contour maps were used to identify critical regions where any change in the steric, electrostatic, and hydrophobic fields may affect the inhibitory activity, and to highlight the key structural features required for biological activity. Moreover, the results obtained from 3D-QSAR analyses were superimposed on the Plasmodium Falciparum cysteine proteases active site and the main interactions were studied. The present work provides extremely useful guidelines for future structural modifications of this class of compounds towards the development of superior antimalarials.  相似文献   

19.

Xanthine oxidase, a complex molybdoflavoprotein, catalyzes the hydroxylation of xanthine to uric acid, which has emerged as an important target for gout and hyperuricemia. In this work, a combination of molecular modeling methods was performed on a series of febuxostat analogues as xanthine oxidase inhibitors to establish molecular models for new drug design, including three-dimensional quantitative structure–activity relationship, topomer comparative molecular field analysis (CoMFA), molecular docking and molecular dynamic simulations. The optimal CoMFA model yielded a leave-one-out correlation coefficient (q2) of 0.841 and a non-validated correlation coefficient (r2) of 0.985. The respective q2 and r2 of the best comparative molecular similarity indices analysis (CoMSIA) model were 0.794 and 0.972, respectively. The Topomer CoMFA model provided a q2 of 0.915 and an r2 of 0.977. 3D contour maps generated from CoMFA and CoMSIA have identified several key features responsible for the inhibition activity. Molecular modeling was taken to further elucidate the proposed binding conformations of the inhibitors to the protein. The obtained results can be served as a useful guideline for designing novel febuxostat derivatives with improved activity against xanthine oxidase.

  相似文献   

20.
The p38 protein kinase is a serine–threonine mitogen activated protein kinase, which plays an important role in inflammation and arthritis. A combined study of 3D-QSAR and molecular docking has been undertaken to explore the structural insights of pyrazolyl urea p38 kinase inhibitors. The 3D-QSAR studies involved comparative molecular field analysis (CoMFA) and comparative molecular similarity indices (CoMSIA). The best CoMFA model was derived from the atom fit alignment with a cross-validated r 2 (q 2) value of 0.516 and conventional r 2 of 0.950, while the best CoMSIA model yielded a q 2 of 0.455 and r 2 of 0.979 (39 molecules in training set, 9 molecules in test set). The CoMFA and CoMSIA contour maps generated from these models provided inklings about the influence of interactive molecular fields in the space on the activity. GOLD, Sybyl (FlexX) and AutoDock docking protocols were exercised to explore the protein–inhibitor interactions. The integration of 3D-QSAR and molecular docking has proffered essential structural features of pyrazolyl urea inhibitors and also strategies to design new potent analogues with enhanced activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号