首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N,N-Diethyldithiocarbamate functionnalized 1,4-polyisoprenes were prepared from 1,4-polyisoprenes (natural or synthetic). The syntheses were performed by nucleophilic addition of N,N-diethyldithiocarbamate salts upon oxirane rings of epoxidized units according to a SN2 mechanism with ring opening. Studies on model molecules of epoxidized 1,4-polyisoprene units (1,2-epoxy-1-methylcyclohexane and 4,5-epoxy-4-methyloctane) were previously achieved to develop the procedure. The best yields were obtained at low temperature in polar medium, and more especially in water with sodium N,N-diethyldithiocarbamate (DEDT-Na) as reagent. A diastereospecific addition was noted when reaction was performed in water with DEDT-Na. Afterwards, the developed procedure was successfully generalized to epoxidized synthetic polyisoprenes and epoxidized natural rubber (in THF, then in latex medium). Excellent results were obtained in latex medium with epoxidized natural rubber (ENR) latices. As with the models, a diastereospecific addition of sodium N,N-diethyldithiocarbamate trihydrate onto epoxidized 1,4-polyisoprene units of ENR was observed at the condition to bring the latex medium to pH 8 before introduction of DEDT-Na. Influence of temperature, drc, and DEDT-Na concentration were successively examined to determine the best conditions of the addition on ENR latices.  相似文献   

2.
Preparation of liquid epoxidized natural rubber (ENR) was made by oxidative depolymerization of ENR in latex stage without loss of epoxy group. Epoxidation of fresh natural rubber latex, which was purified by deproteinization with proteolytic enzyme and surfactant, was carried out with freshly prepared peracetic acid. The glass transition temperature (Tg) and gel content of the rubbers increased after the epoxidation, both of which were dependent upon an amount of peracetic acid. The gel content was significantly reduced by oxidative depolymerization of the rubber with (NH4)2S2O8 in the presence of propanal. The resulting liquid epoxidized rubber (Mn≈104) was found to have well-defined terminal groups, i.e. aldehyde groups and α-β unsaturated carbonyl groups. The novel rubber was applied to transport Li+ as an ionic conducting medium, that is, solid polymer electrolyte.  相似文献   

3.
Nanocomposites containing natural rubber (NR) as matrix, epoxidized natural rubber (ENR) as compatibilizer and organophilic layered clay (organoclay) as filler were produced in an internal mixer and cured using a conventional sulphuric system. The effects of ENR with 25 (ENR 25) and 50 mol% epoxidation (ENR 50), respectively, were compared at 5 and 10 parts per hundred rubber (phr) concentrations. The organoclay content was fixed at 2 phr. Cure characteristics, clay dispersion, (thermo)mechanical properties of the nanocomposites were determined and discussed. Incorporation of ENR and organoclay strongly affected the parameters which could be derived from Monsanto MDR measurements. Faster cure and increased crosslink density were attributed to changes in the activation/crosslinking pathway which was, however, not studied in detail. The organoclay was mostly intercalated according to X-ray diffraction (XRD) and transmission electron microscopic (TEM) results. The best clay dispersion was achieved by adding ENR 50. This was reflected in the stiffness of the nanocomposites derived from both dynamic mechanical thermal analysis (DMTA) and tensile tests. The tensile and tear strengths of the ENR 50 containing nanocomposites were also superior to the ENR 25 compatibilized and uncompatibilized stocks.  相似文献   

4.
This research work has concerned a study on toughness of PVC/natural rubber (NR) blends compatibilized with epoxidized natural rubber (ENR). The aim of this work was to investigate the effect of degree of epoxidation on morphology and mechanical properties of the blends. Epoxidized natural rubber with a variety of epoxidation contents were prepared by reacting the NR latex with formic acid and hydrogen peroxide at various chemical contents. Chemical structure and epoxidation content of epoxidized natural rubber were evaluated by FTIR and 1H-NMR techniques. After that, three grades of ENR with epoxidation contents of 15, 25 and 42 % (by mole) were further used for blending with PVC and NR in an internal mixer at 60 rpm and at 170 °C. From tensile and impact tests, it was found that tensile elongation and impact strength of the materials remarkably increased with degree of epoxidation. On the other hand, tensile strength and modulus of the materials rarely changed with the epoxidation content. An increase in toughness of the blends with epoxidation content was related to a better molecular interaction between PVC and ENR as suggested by torque-time curves of the materials.  相似文献   

5.
The processing performances and aging behaviours of gel and sol separated from epoxidized natural rubber (ENR) using organic solvents were studied by using rubber processing analyzer (RPA), thermogravimetric analysis (TGA) and difference FT-IR method. As the gel with intermolecular ether structure is formed by the ring-opening reactions of a part of epoxy groups during the preparation and storage of ENR, the molar percentage of epoxy groups of gel is lower than that of sol. The gel shows higher elastic moduli to temperature and frequency responses, lower tan δ to frequency and strain response and higher elastic torque to strain response as comparing to those of sol. Therefore, the formation of gel will reduce processing performance of ENR. When the aging behaviours of gel and sol were analyzed by different methods, the aging reactions and their degrees were different because of the differences of aging conditions. Compared to gel, the sol is easy to be crosslinked, leading to a higher Δtan δ from the RPA analysis and it is also easy to be oxidized into small molecules, leading to lower onset temperature and apparent activation energy when being analyzed by TGA. However, the variations of functional groups of gel are more obvious than those of sol when analyzed by difference FT-IR method. As the mechanical properties of ENR will be varied with the variations of molecular structures, the formations of gel during preparation and storage of ENR will reduce the oxidative aging resistance of ENR.  相似文献   

6.
The dynamic properties, curing characteristics and swelling behaviour of styrene butadiene rubber (SBR) and epoxidized natural rubber (ENR) blends were studied. The incorporation of ENR 50 in the blends improved processability, stiffness, resilience and reduced the damping property. In terms of curing characteristics, the scorch time, t2 and curing time, t90 of the SBR/ENR blends decrease with increasing ENR content. At room temperature (23°C) and at 100°C the swelling degree of the SBR/ENR blends decreases with increasing ENR content.  相似文献   

7.
Green biodegradable thermoplastic natural rubber (GB‐TPNR) based on simple blend of natural rubber (NR) and poly(butylene succinate) (PBS) was prepared using three NR alternatives: unmodified NR and epoxidized NR with 25‐ or 50‐mol% epoxide (ie, ENR‐25 or ENR‐50). It was found that ENR‐50/PBS blend showed the best compatibility, which resulted in superior mechanical and thermal properties with the highest crystallinity of the PBS phase, on comparing with the ENR‐25/PBS and NR/PBS blends. This might be attributed to stronger chemical interactions between the epoxide groups in ENR‐50 and the polar functional groups in PBS, which were confirmed by Fourier transform infrared (FTIR). Furthermore, scanning electron microscopy (SEM), atomic force microscopy (AFM), and polarizing optical microscopy (POM) micrographs of ENR‐50/PBS blend revealed phase separation with finer‐grained cocontinuous structure than in ENR‐25/PBS and NR/PBS simple blends. Furthermore, the chemical interactions in ENR‐50/PBS blend enhanced the resistance to accelerated weathering.  相似文献   

8.
Hydrogenation of epoxidized natural rubber (ENR) was performed to introduce hydroxyl group to hydrogenated natural rubber. The ENR was prepared by epoxidation of deproteinized natural rubber (DPNR) with peracetic acid in latex stage. Hydrogenation of epoxidized DPNR (EDPNR) was performed with p-toluenesulfonylhydrazide in p-xylene. The resulting product, hydrogenated EDPNR (HEDPNR), was characterized by nuclear magnetic resonance spectroscopy with various pulse sequences, i.e., two-dimensional correlation spectroscopy, two-dimensional heteronuclear correlation measurements. Carbons linking up to hydroxyl group were assigned to be quaternary and tertiary groups. The HEDPNR was proved to be a polyolefine elastomer through differential scanning calorimetry.  相似文献   

9.
Blends of polypropylene (PP) and epoxidized natural rubber (ENR) were prepared by an in‐line electron induced reactive processing technique. The mixing was done in a Brabender mixing chamber coupled with an electron accelerator. The effect of sequence of electron treatment on the compatibilization of non‐polar PP and polar ENR was investigated in the presence of triallyl cyanurate (TAC). Finally, the resulting blends were characterized by different techniques, namely, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), tensile tests, and rheological studies. Generation of phase coupling and chemical compatibilization were observed from FTIR analysis. DMA studies showed enhanced high‐temperature modulus (above the glass transition temperature of both components) followed up by lowering in the tan δ peak. Rheological studies showed increase in modulus at low frequencies. Electron treatment and incorporation of rubber phase into PP showed significant effect on the degree of crystallinity of the blends, which was characterized by DSC study. The results obtained from FTIR, DMA, SEM, rheological studies, and tensile tests strongly affirmed that electron induced reactive processing of PP in presence of TAC before adding of ENR performed the best amongst all samples modified with electrons investigated in this study. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Method of quantitative analysis through latex‐state 13C NMR spectroscopy was established for in situ determination of epoxy group content of epoxidized natural rubber in latex stage. The epoxidized natural rubber latex was prepared by epoxidation of deproteinized natural rubber with freshly prepared peracetic acid in latex stage. The resulting epoxidized deproteinized natural rubber (EDPNR) latex was characterized through latex‐state 13C NMR spectroscopy. Chemical shift values of signals of latex‐state 13C NMR spectrum for EDPNR were similar to those of solution‐state 13C NMR spectrum for EDPNR. Resolution of latex‐state 13C NMR spectrum was gradually improved as temperature for the nuclear magnetic resonance (NMR) measurement increased to 70°C. Signal‐to‐noise ratio of latex‐state 13C NMR measurement was similar to that of solution‐state 13C NMR measurement at temperature above 50°C. The epoxy group content determined through latex‐state NMR spectroscopy was proved to be the same as that determined through solution‐state NMR spectroscopy. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
The effects of epoxidized natural rubber (ENR) on the curing behaviors and adhesive strengths of an epoxy (diglycidyl ether of bisphenol-A) and dicyandiamide/2-methyl imidazole system are studied with differential thermal calorimetry (DSC), scanning electron microscopy (SEM), and Instron tensile testing instrument. From DSC analyses of specimens prepared with unsealed aluminum pans, it is obtained that the reaction exotherm, the time to maximal curing rate, the glass transition temperature, the rate constant, and the reaction order of the epoxy system change with respect to the content of ENR added because of the reaction of ENR with the epoxy system. The results obtained from SEM micrographs indicate that the particle size of the rubber phase increases with increasing the curing temperature and the ENR content. The volume fraction of the separated rubber phase also follows the similar trend except at the high curing temperature which implying that the dissolution of epoxy resin in the ENR phase also depends on the curing temperature and the amount of ENR present. The lap shear strengths of specimens prepared with etched aluminum substrates increase with increasing the curing temperature because of a better cure at a higher temperature, but decrease with increasing the ENR content resulting from an adverse effect of ENR on the mechanical properties of the cured resins.  相似文献   

12.
The pervaporation separation and the swelling behavior of chlorinated hydrocarbon/acetone mixtures were investigated using natural rubber (NR) and epoxidized natural rubber (ENR) membrane with 25 and 50 mol% epoxidation, respectively. The swelling degree increases with increase in the epoxidation level. The flux and separation factor of the membranes were determined both as a function of mole percent epoxidation and of the feed mixture composition. The membranes were found to be permselective to chlorinated hydrocarbons from acetone–chlorinated hydrocarbon mixtures. The flux decreases with increase in epoxidation level, whereas the separation factor increases. The permeation decreases and separation factor increases with increase in the acetone feed concentration. The availability of raw materials, low cost of implementation and easy processability of the system makes this method of separation highly applicable and recommendable.  相似文献   

13.
The thermal and kinetic studies of epoxidized natural rubber (ENR) and its polymer electrolytes, LiX/ENR PEs, (where X = ClO 4 ? , CF3SO 3 ? , COOCF 3 ? , I?, and BF 4 ? ) were carried out using thermogravimetric analysis at different heating rates. The thermal behaviors for LiX/ENR PEs are closely related to the morphology and interactions between the LiX and ENR chains. The LiCF3SO3, LiCOOCF3, and LiI form pseudo-crosslinking within the ENR; their thermal behavior resembled purified ENR. The LiClO4 tends to form aggregates within the ENR. This phenomenon has promoted a much earlier decomposition of epoxide in the ENR. The occurrence of ring-opening and complexation or cross-linking reactions in and between the ENR chains in the LiBF4/ENR has produced a thermally stable macrostructure. The activation energy for the thermal degradation (E d) of purified ENR was 239.8 and 239.9 kJ mol?1 using Kissinger and FWO methods, respectively. According to the Coats–Redfern method, the degradation mechanism of purified ENR follows the F1 type model, while the Criado method revealed that the degradation starts with F1 followed by D3 type models. The E d for LiX/ENR (X = COOCF 3 ? , CF3SO 3 ? , I?, and BF 4 ? ) PE’s obtained via the Kissinger method are 258.5, 257.0, 251.0, and 198.9 kJ mol?1, respectively, and the corresponding E d values obtained by FWO are 236.0, 223.6, 349.7, and 206.6 kJ mol?1, respectively. The degradation of ENR in these PEs followed the D3 type model. However, for LiClO4/ENR, the presence of two distinct degradations of ENR gave two E d values. These are 174.5 and 234.7 kJ mol?1 using Kissinger and 117.8 and 293.6 kJ mol?1 using FWO method. The degradation mechanism of ENR in the LiClO4/ENR PE was similar to purified ENR that is F1 followed by D3 type models.  相似文献   

14.
Silica reinforcement of epoxidized natural rubber by the sol-gel method   总被引:3,自引:0,他引:3  
The sol-gel technique was employed to prepare silica-reinforced vulcanizates using tetraethylorthosilicate (TEOS) and epoxidized natural rubber (ENR). The rubber was first precured with 3-aminopropyltriethoxysilane (APS) by heat pressing at 180°C for a range of cure time. The resultant rubber sheets or vulcanizates were swelled in TEOS, and subsequently subjected to a sol-gel reaction in butylamine aqueous solution. Hydrolysis and condensation of the TEOS resulted in the formation of silica particles in the rubber network yielding silica-contained vulcanizates. Silica content as high as 28% and TEOS-to-silica conversion of over 60% were observed. When prepared under certain reaction conditions, the sol-gel vulcanizates obtained were more rigid and stronger than a typical sulfur-cured ENR vulcanizate that contained comparable amount of silica. Comparative stress-strain and dynamic mechanical property analysis suggest that chemicals bond are formed between the silica particles and the rubber network in the ENR-APS-sol-gel vulcanizate. Thus, the in situ silica reinforcement of ENR was successfully established.On leave from School of Industrial Technology, University Sains Malaysia, Minden, 11800, Penang, Malaysia.  相似文献   

15.
用FTIR研究环氧化天然橡胶的热老化   总被引:8,自引:0,他引:8  
李思东  余和平 《应用化学》1999,16(2):111-112
与天然橡胶(NR)相比,环氧化天然橡胶(ENR)具有良好的耐油性和气密性[1,2],并由于环氧基团而有一定的极性,同其它高聚物的相容性较好.通过环氧基团的二次反应,ENR分子链可接上其它的功能团,满足一些特殊的用途[3,4].对于ENR的力学性能、共...  相似文献   

16.
Composite latex particles consisting of epoxidised natural rubber (ENR) and poly(methyl methacrylate) (PMMA) were synthesised to obtain interpenetrating polymer networks. Among the ENR latices having 9 to 36 mol% epoxide, prepared by in situ reaction using performic acid, the ENR latex with 25 mol% epoxide was selected for prevulcanisation by sulphur or γ-radiation system. The swelling ratios of sheets cast from the sulphur-prevulcanised ENR (SPENR) latices decreased with increasing prevulcanisation time while those cast from the γ-radiation-prevulcanised ENR latices were also inversely proportional to the irradiation dose. By applying the phase transfer/bulk polymerisation/transmission electron microscopy (TEM) technique, a homogeneous network structure in each of the SPENR particles and also a relative dense network near the surface in γ-radiation (RV) ENR particle were noticed. When 10 to 30 wt% of MMA swollen in ENR particles was polymerised, the mesh structure was observed in each particle. The dense network near the RVENR particle surface might be used as additional evidence that the degree of epoxidation and, hence, the presence of swollen n-butyl acrylate in the outer zone were higher than in the internal region.  相似文献   

17.
A polystyrene‐modified epoxidized novolac resin/montmorillonite nanocomposite was fabricated and characterized successfully. For this purpose, novolac resin (NR) was epoxidized through the reaction of phenolic hydroxyl group with epichlorohydrin in super basic medium to produce epoxidized novolac resin (ENR). Afterward, a polystyrene was synthesized by atom transfer radical polymerization (ATRP) technique, and then brominated at the benzylic positions using N‐bromosuccinimide (NBS). The brominated polystyrene (PSt‐Br) was reacted with ethanolamine in basic medium in order to afford an amine‐functionalized polystyrene (PSt‐NH2). An organo‐modified montmorillonite (O‐MMT) was synthesized through the treatment of MMT with hexadecyl trimethyl ammonium chloride salt. Finally, ENR‐PSt/MMT nanocomposite was fabricated through curing a mixture of ENR (70 wt.%) and O‐MMT (5 wt.%) with PSt‐NH2 (25 wt.%). Transition electron microscopy (TEM) and powder X‐ray diffraction (XRD) analysis revealed that the fabricated nanocomposite has an exfoliated structure. Thermal property studies using thermogravimetric analysis (TGA) showed that the curing of ENR by PSt‐NH2, as well as incorporation of a small amount of MMT have synergistic effect on the thermal stability of the ENR resin.  相似文献   

18.
Eucommia ulmoides gum (EUG) is a renewable and sustainable polymer, which could be used as rubber or plastic by altering its crosslinking density while the complicated extracting process and nonpolar molecular chains limited its application. In this effort, a novel extraction method was introduced, which could simplify the extraction process of EUG. Then, the extracted EUG‐chloroform (CHCl3) solution was directly used to prepare epoxidized EUG (EEUG) with an epoxy degree of 40.0% to improve its polarity. The epoxidized natural EUG exhibiting both polar and nonpolar motives had an advantage in working as an interfacial compatibilizer for polymer composites, especially bio‐based composites due to its inherent biocompatibility. Accordingly, the role of EEUG in modifying the interface of styrene‐butadiene rubber (SBR)/silica composites were explored. The results showed that EEUG in SBR/silica composites acted not only as a compatibilizer but also as a constructure generating better mechanical properties than other compatibilizers, such as silane couplings, Si‐69 and KH‐550, and epoxidized natural rubber (ENR). The simplified extracting process and the epoxy modification of EUG would extend its application in rubber materials, medical materials, and biopolymer materials.  相似文献   

19.
硫化环氧天然橡胶的热分析   总被引:2,自引:0,他引:2  
张北龙  陈美  刘惠伦 《应用化学》2001,18(4):332-334
环氧化天然橡胶;热重分析;动力学;硫化环氧天然橡胶的热分析  相似文献   

20.
This review is focused on recent achievements in bio-based self-healable elastomeric materials with special regard to elastomers made of natural rubber (NR) and its modified forms, including epoxidized natural rubber (ENR), oxidized natural rubber (oNR) or carbonated natural rubber (CNR). Besides natural rubber, also Eucommia ulmoides gum (EUG), which is an isomer of cis-1,4-polyisoprene, is a material of great interest to obtain bio-based self-healable elastomers. The paper attempts to describe the main classification of the most important intrinsic self-repairing mechanisms, including different types of reversible non-covalent interactions (such as hydrogen bonding, ionic interactions, metal–ligand coordination, shape-memory ability), dynamic covalent bonds (for instance Diels-Alder reversible bonds, dynamic sulfur-sulfur bonds, dynamic ester bonds, boronic-ester exchangeable bonds, dynamic imine bonds, silyl ether exchangeable bonds) and their combinations, which are found in self-healing elastomers. Furthermore, examples of NR-based elastomeric materials are provided and the potential applications proposed by researchers are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号