首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We report the development of the frequency-modulation (FM) method for measuring electron spin resonance (ESR) absorption in the 210- to 420GHz frequency range. We demonstrate that using a high-frequency ESR spectrometer without resonating microwave components enables us to overcome technical difficulties associated with the FM method due to nonlinear microwave-elements, without sacrificing spectrometer performance. FM was achieved by modulating the reference oscillator of a 13GHz Phase-Locked Dielectric Resonator Oscillator, and amplifying and frequency-multiplying the resulting millimeter-wave radiation up to 210, 315 and 420GHz. ESR spectra were obtained in reflection mode by a lock-in detection at the fundamental modulation frequency, and also at the second and third harmonic. Sensitivity of the setup was verified by conduction electron spin resonance measurement in KC60.  相似文献   

2.
叙述了一个L波段(1.05 GHz)用于ESR和ESR成像的装置,用这套自制装置实现了3D ESR成像. 该装置由L波段ESR谱仪、三组梯度场线圈及控制单元和PC机数据采集系统组成. 样品腔是一个3-环2-缝再进入式谐振腔,可放入直径为20 mm、 长30 mm的H2O样品,空谐振腔的频率是1.05 GHz. 微波振荡频率用自动频率控制(AFC)的方法自动锁在有载腔的频率上. 梯度场线圈沿X-,Y-和Z-轴产生线性梯度场,在中心40 mm球形范围内梯度场强度为2 mT/cm. 依照Lauterbur's方法进行3D ESR 图像重建. 用该系统检测了样品中TEMPO氮氧自由基的3D空间分布. 得到了TEMPO的2D、3D ESR图像、用像素灰度表示的自旋密度分布图及3D ESR-CT图像.  相似文献   

3.
We describe the ESR spectrometer we developed. Our aim was twofold: i) to reach the highest possible frequency and ii) to devise a frequency tunable spectrometer. The tunable source is an optically pumped far infrared laser which has been used from 160 GHz up to 525 GHz with magnetic fields of up to 19 T. We present measurements performed in semiconductor physics and in molecular chemical physics. These measurements allowed us to distinguish electric dipolar transitions from magnetic dipolar transitions. The increase ing-factor resolution was used to discriminate between entities withg-factors differing by a few 10?5. This property together with the study of the line-width frequency dependence was used in geophysics. We studied the spin relaxation mechanisms of the model system Phosphorus doped Silicon. The variation of the spin relaxation time with temperature shows the importance of two-phonon mechanisms. High frequency tunable ESR makes possible the study of compounds with large zero field splitting which are ESR silent at standard frequencies.  相似文献   

4.
We present a newly-developed microwave probe for performing sensitive high-field/multi-frequency electron spin resonance (ESR) measurements under high hydrostatic pressures. The system consists of a BeCu-made pressure-resistant vessel, which accommodates the investigated sample and a diamond microwave coupling window. The probe’s interior is completely filled with a pressure-transmitting fluid. The setup operates in reflection mode and can easily be assembled with a standard oversized microwave circuitry. The probe-head withstands hydrostatic pressures up to 1.6 GPa and interfaces with our home-built quasi-optical high-field ESR facility, operating in a millimeter/submillimeter frequency range of 105–420 GHz and in magnetic fields up to 16 T. The overall performance of the probe was tested, while studying the pressure-induced changes in the spin-relaxation mechanisms of a quasi-1D conducting polymer, KC60. The preliminary measurements revealed that the probe yields similar signal-to-noise ratio to that of commercially available low-frequency ESR spectrometers. Moreover, by observing the conduction electron spin resonance (CESR) linewidth broadening for KC60 in an unprecedented microwave frequency range of 210–420 GHz and in the pressure range of up to 1.6 GPa, we demonstrate that a combination of high-pressure ESR probe and high-field/multi-frequency spectrometer allows us to measure the spin relaxation rates in conducting spin systems, like the quasi-1D conductor, KC60.  相似文献   

5.
The design and performance of an electron spin resonance spectrometer operating at 3 and 9 GHz microwave frequencies combined with a 9-T superconducting magnet are described. The probehead contains a compact two-loop, one gap resonator, and is inside the variable temperature insert of the magnet enabling measurements in the 0-9T magnetic field and 1.5-400 K temperature range. The spectrometer allows studies on systems where resonance occurs at fields far above the g approximately 2 paramagnetic condition such as in antiferromagnets. The low quality factor of the resonator allows time resolved experiments such as, e.g., longitudinally detected ESR. We demonstrate the performance of the spectrometer on the NaNiO2 antiferromagnet, the MgB2 superconductor, and the RbC60 conducting alkaline fulleride polymer.  相似文献   

6.
We describe a multifrequency quasi-optical electron spin resonance (ESR) spectrometer operating in the 75–225 GHz range and optimized at 222.4 GHz for general use in condensed matter physics and chemistry. The quasi-optical bridge detects the change of millimeter wave polarization at the ESR condition. A controllable reference arm maintains a millimeter wave bias at the detector. The sensitivity of 2 × 1010 spin/(G Hz0.5), measured on a dilute Mn:MgO sample in a non-resonant probe head at 222.4 GHz and 300 K, is comparable to that of commercial high-sensitive X-band spectrometers. The spectrometer is robust, easy to use and may be operated by undergraduate students. Its performance is demonstrated by examples from various fields of condensed matter physics.  相似文献   

7.
The sensitivity of a high-frequency electron spin resonance (ESR) spectrometer depends strongly on the structure used to couple the incident millimeter wave to the sample that generates the ESR signal. Subsequent coupling of the ESR signal to the detection arm of the spectrometer is also a crucial consideration for achieving high spectrometer sensitivity. In previous work, we found that a means for continuously varying the coupling was necessary for attaining high sensitivity reliably and reproducibly. We report here on a novel asymmetric mesh structure that achieves continuously variable coupling by rotating the mesh in its own plane about the millimeter-wave transmission-line optical axis. We quantify the performance of this device with nitroxide spin label spectra in both a lossy aqueous solution and a low-loss solid-state system. These two systems have very different coupling requirements and are representative of the range of coupling achievable with this technique. Lossy systems, in particular, are a demanding test of the achievable sensitivity and allow us to assess the suitability of this approach for applying high-frequency ESR, e.g., to the study of biological systems at physiological conditions. The variable coupling technique reported on here allows us to readily achieve a factor of ca. 7 improvement in the signal-to-noise ratio at 170 GHz and a factor of ca. 5 at 95 GHz over what has previously been reported for lossy samples.  相似文献   

8.
A spectrometer based on the effect of freely decaying polarization in the frequency range 500–700 GHz has been designed. Radiation sources are harmonics from a quantum semiconductor superlattice frequency multiplier. The receiving system of this spectrometer is constructed using a superconducting integrated receiver based on a superconductor-insulator-superconductor mixer and a flux-flow oscillator operating as a heterodyne oscillator. The spectrometer has been used to measure absorption lines of NH3 in a sample of expired air (572 GHz).  相似文献   

9.
The ESR of Cr3+ in dark ruby is measured using a high frequency ESR spectrometer with a wide frequency range which uses a gyrotron as the radiation source. For this purpose, GYROTRON FU- IV A developed at Fukui University was optimized for use in an ESR apparatus operating in the millimeter-wave range.The observed fine structure constant D for ruby is found to be D –5.728 GHz and the g-values g 1.981, g 1.982. Both the values of |D| and g are smaller than those obtained at lower frequencies by other work. Higher order terms of the spin hamiltonian are discussed in order to understand the ruby ESR results in this higher frequency range.  相似文献   

10.
ESR device using a submillimeter wave gyrotron as a radiation source and a pulse magnet for high field up to 30 T has been constructed. Our gyrotrons (Gyrotron FU series) were developed as millimeter and submillimeter wave radiation sources and have attractive advantages for ESR spectroscopy, for example, high power and frequency tunability over broad range. The ESR device has been successfully applied to three cases of ESR measurements. In the first case, the temperature dependence of ESR was measured for a typical antiferromagnetic material MnO at the frequency of 301 GHz. In the second case, the dependence of the fine structure constant of the ruby on the magnetic field intensity was measured in the millimeter to submillimeter wave region. In these two cases, the gyrotron was operated by complete cw mode. In the final case, a pulse technique was applied to the ESR, the gyrotron was operated in pulse mode and the pulsed magnetic field was generated in the synchronized phase with the gyrotron operation.  相似文献   

11.
A submillimeter-wave/far-infrared (SMM/FIR) laser sideband heterodyne spectrometer has been built for molecular rotational spectroscopy application in the frequency range of 600–3000 GHz. Based on Gaussian optics, optical system of the spectrometer is designed to be quasi-achromatic and low losses. In this article the optical design and the performance of the spectrometer are presented.  相似文献   

12.
王绍良  李亮  欧阳钟文  夏正才  夏念明  彭涛  张凯波 《物理学报》2012,61(10):107601-107601
国内第一套脉冲强磁场高频电子自旋共振(ESR)装置由武汉国家脉冲强磁场科学中心研制成功.该装置的频率范围为210-370 GHz,样品温度范围为2-300 K, 磁场强度为0-50 T.在脉冲强磁场ESR装置上进行了红宝石ESR实验,获得了Cr3+ 离子的ESR谱.  相似文献   

13.
Fine structure constant of ruby has been measured using an ESR spectrometer with a pulse magnetic for high fields and a gyrotron as a radiation source in a millimeter to submillimeter wave range. The measurement was carried out at room temperature. The Zeeman energy in this frequency range is large enough compared with the fine structure constant. The higher order term in the effective spin Hamiltonian can explain the dependence of fine structure constant on the frequency. The observed fine structure constants depend on the field intensity.  相似文献   

14.
The construction and the performance of a double pass rapid scanning Fourier transform spectrometer are described. The instrument covers a frequency range below 900 GHz. It has a maximum spectral resolution of 6.6 GHz and a maximum time resolution of 10 msec. The spectrometer has been applied to JIPP T-II device at Institute of Plasma Physics in Nagoya University. Electron cyclotron emission from the device has been measured and the electron temperature of the plasma has been obtained. The results are shown.  相似文献   

15.
New calculations of the absorption coefficients of the rotational transitions of 32S16O2 are given for all energy levels up to J = 50 and frequencies less than 200 GHz. A spectrometer incorporating a semiconfocal Fabry-Perot resonant cavity and operating in the vicinity of 70 GHz is described. The calculated absorption coefficients are compared to measured values obtained with this spectrometer and to existing measurements over the frequency range 26–40 GHz. The results obtained are in general agreement to within 5–10%. A detailed knowledge of the absorption coefficient behavior as a function of frequency is of particular interest in the development of high-sensitivity SO2 monitors, and in investigations of the kinetics of fast chemical reactions.  相似文献   

16.
Recently, distance measurements by pulsed ESR (electron spin resonance) have been obtained using pulsed DEER (double electron-electron resonance) and DQC (double quantum coherence) in SDSL (site directed spin labeling) proteins. These methods can observe long range dipole interactions (15-80A). We applied these methods to human ubiquitin proteins. The distance between the 20th and the 35th cysteine was estimated in doubly spin labeled human ubiquitin. Pulsed DEER requires two microwave sources. However, a phase cycle is not usually required in this method. On the other hand, DQC-ESR at X-band ( approximately 9GHz) can acquire a large echo signal by using pulses of short duration and high power, but this method has an ESEEM (electron spin echo envelope modulation) problem. We used a commercial pulsed ESR spectrometer and compared these two methods.  相似文献   

17.
Instrumental requirements for pulsed NMR studies of hyperfine splittings in rate-earth metals and compounds are considered, with particular attention to factors affecting the design of the specimen cavity. A spin-echo spectrometer for hyperfine studies in the 2 to 8 GHz frequency range is described.  相似文献   

18.
The design of a chirped-pulse Fourier transform microwave spectrometer operating in the 2–8 GHz frequency range is presented. The linear frequency sweep is generated by an arbitrary waveform generator with a sampling rate of 20 GS/s. After amplification, the microwave pulse is broadcast into a vacuum chamber where it interacts with a supersonically expanded molecular sample. The resulting molecular free induction decay signal is amplified and digitized directly on a digital oscilloscope with a 20 GS/s sampling rate. No frequency mixing or multiplication is necessary in this spectrometer, which allows for very high pulse quality and phase stability. The performance of this spectrometer is demonstrated on the rotational spectrum of iodobenzene. All four distinct singly-substituted 13C isotopologues have been detected in natural abundance, as well as two isotopic species of a van der Waals cluster of iodobenzene with a neon atom. Spectroscopic constants and derived structural parameters for iodobenzene and for iodobenzene–Ne are reported. In addition, the use of microwave–microwave double-resonance experiments in this spectrometer to facilitate spectral assignments is presented.  相似文献   

19.
An improved pulsed microwave spectrometer for the detection of rotational transitions in gaseous molecules in the frequency range of 130–150 GHz is described. It incorporates a tunable Fabry-Perot cavity and a low noise superneterodyne receiver for the detection of the molecular emission signals. The molecules are excited by /2 pulses provided by a high efficiency frequency doubler which is pulse modulated at an IF frequency of 1.4 GHz.  相似文献   

20.
In the following we present a 14N quadrupole hyperfine structure, a fourth-order centrifugal distortion, and an IAM methyl internal rotation analysis of 3- and 5-methylisoxazole. The measurements were done in the frequency range of 8 to 26 GHz employing a microwave Fourier transform spectrometer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号