首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Collapse of a poly(N-isopropylacrylamide)(PNIPAM) chain upon heating and phase diagrams of aqueous PNIPAM solutions with very flat LCST phase separation line are theoretically studied on the basis of cooperative dehydration(simultaneous dissociation of bound water molecules in a group of correlated sequence),and compared with the experimental observation of temperature-induced coil-globule transition by light scattering methods.The transition becomes sharper with the cooperativity parameterσof hydration.Reentrant coil-globule-coil transition in mixed solvent of water and methanol is also studied from the viewpoint of competitive hydrogen bonds between polymer-water and polymer-methanol. The downward shift of the cloud-point curves(LCST cononsolvency) with the mole fraction of methanol due to the competition is calculated and compared with the experimental data.Aqueous solutions of hydophobically-modified PNIPAM carrying short alkyl chains at both chain ends(telechelic PNIPAM) are theoretically and experimentally studied.The LCST of these solutions is found to shift downward along the sol-gel transition curve as a result of end-chain association (association-induced phase separation),and separate from the coil-globule transition line.Associated structures in the solution,such as flower micelles,mesoglobules and higher fractal assembly,are studied by USANS with theoretical modeling of the scattering function.  相似文献   

2.
New well-defined telechelic poly(phenyleneoxide)s (PPO's) were synthesized from 4-bromo-2,6-dimethylphenol and bi-phenolic compounds through phase transfer catalyzed aromatic nucleophilic substitution polymerization. Bisphenol-A (BPA), 4,4-biphenol (BP), hydroquinone (HQ) and 2,6-dihydroxynaphthalene (DHN) were employed as telechelic units. The composition analysis by proton-nuclear magnetic resonance (1H-NMR) spectroscopy revealed that DHN was highly reactive compared to BPA and HQ, whereas BP was un-reactive in the polymerization process. The number average repeating unit (n) in telechelic PPO was estimated as n=17-19 and n=17-20 for DHN and BPA (or HQ), respectively. The reactivity of the bi-phenolic in PPO synthesis are confirmed as DHN > HQ ∼ BPA ? BP. The molecular weight determination by gel permeation chromatography (GPC) and viscosity method suggest that the molecular weight of PPO decreased drastically with increasing amount of bi-phenolic units in the feed. The GPC chromatogram of PPO showed a bi-modal distribution, clearly indicative of formation of two different types of molecular weight chains, whereas the telechelic polymers have a mono-modal distribution with a narrow polydispersity. Thermal analysis by differential scanning calorimetry revealed that telechelic polymers are highly amorphous, like PPO, and no crystallization or melting peaks were observed in the heating/cooling cycles.  相似文献   

3.
We develop a theoretical model of cooperative hydration to clarify the molecular origin of the observed nonlinear depression of the lower critical solution temperature (LCST) in the aqueous solutions of thermosensitive random copolymers and find the monomer composition at which LCST shows a minimum. Phase diagrams of poly(N-isopropylacrylamide-co-N,N-diethylacrylamide) copolymer solutions are theoretically derived on the basis of the theory of cooperative hydration by introducing the microscopic structure parameter η which characterizes the distribution of the monomer sequences along the chains. We compared them with the experimental data of LCST of random copolymers with various monomer compositions and also of the diblock copolymers with equimolar monomer composition. The transition temperature shifts to lower than those of homopolymer counterparts when the monomer sequence of the chains has an alternative tendency. On the contrary, for the blocky polymers such as diblock copolymers, the transition temperature remains almost the same as those of the homopolymers. Thus, the nonlinear effect in phase separation appears when the average block length of the copolymers is shorter than the average sequence length of the cooperative hydration. The degree of hydration is calculated as a function of the temperature and polymer concentration for varied distribution of the copolymer compositions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1112–1123  相似文献   

4.
The interaction forces between poly(N-isopropylacrylamide) (PNIPAAm)-grafted surfaces and colloidal particles in an aqueous solution were investigated using an atomic force microscope. Measurements were conducted between smooth silicon wafers on which PNIPAAm was terminally grafted and silica particles hydrophobized with a silanating reagent in an aqueous electrolyte solution under controlled temperature. Below the lower critical solution temperature (LCST) of PNIPAAm, there were large repulsive forces between the surfaces, both on approach and separation of the surfaces. On the other hand, above LCST, attractive forces were observed both in approaching and in separating force curves. When surface hydrophobicity of the particles increased, the maximum attractive force tended to increase. The changes of hydration state of the grafted PNIPAAm chains depending on temperature are considered to greatly alter the interaction force properties. The role of the intermolecular interaction between the PNIPAAm chains and the hydrophobic particles in the interaction forces is discussed.  相似文献   

5.
Phase diagrams of aqueous solutions of poly(N-vinyl caprolactam) (PVCL), N-vinyl caprolactam copolymer with vinylamine (3.8 mol%) (CP(VCL-VA)), and poly(N-vinyl propylacetamide) (PVPA) were shown to be binodal curves with lower critical solution temperatures (LCST) in the range 304–313.5 K and critical concentrations in the range of 0.02–0.08 polymer weight fraction. Aqueous solutions of N-vinyl caprolactam copolymer with N-vinyl pyrrolidone (80 mol%) (CP(VCL-VP)) remained homogeneous in the entire region of the liquid state of water. The enthalpy of mixing with water of PVPA and CP(VCL-VP) was negative and the curve was concave over the entire range of composition at 298 and 308 K. The excessive heat capacity and partial heat capacity at infinite dilution of PVPA were positive, proving the hydrophobic character of hydration of this polymer. In contrast, these parameters were negative for CP(VCL-VP), revealing hydrophilic hydration. Hydrophilic hydration was predominant in solutions which were homogeneous over a wide temperature range, whereas hydrophobic hydration predominated in solution of polymers with LCST.  相似文献   

6.
Poly(N-isopropylacrylamide) and poly(vinyl methyl ether) are well-known thermoresponsive polymers. The aqueous solutions of these polymers exhibit a phase transition followed by phase separation with LCST approximately 305-310 K. In the present study, the dynamic behavior of the phase separation was analyzed by a laser T-jump method. Two different T-jump methodologies were employed: the first was a dye-photosensitized T-jump technique (indirect heating) using 532 nm laser pulses, while the other was a direct heating T-jump technique using 1.2 mum laser pulses. Both methods gave similar results. The time constants (tau) of the phase separation were systematically determined for 1-10 wt % aqueous solutions of the polymers, and a hydrodynamic radius (R) dependence for tau was clearly observed. The values of tau increased linearly with increasing square of R. The present behavior is interpretable in the framework of Tanaka's model for the volume phase transition of a gel, since each of the polymer chains are entangled in the present sample solutions, which can be regarded as approximating to a gel in solution.  相似文献   

7.
The lower critical solution temperature of aqueous solutions of poly(N-vinyl caprolactam) falls in the 305–307 K range and depends on the molecular weight of the polymer. The thermodynamic functions of mixing at 298 K have been calculated from measurements of vapor pressures and heats of dissolution and dilution. Partial Gibbs energy, partial enthalpy, and partial entropy of mixing were negative over the entire range of composition. Increasing temperature resulted in a decrease in the exothermal character of mixing. Excessive heat capacity values, calculated from the dependencies of enthalpy of mixing on temperature, were positive over the entire composition range. Heat capacity of dilute solutions was measured at 298 K and partial heat capacity of poly(N-vinyl caprolactam) at infinite dilution was shown to be positive. The data obtained point out the hydrophilic and hydrophobic hydration of poly(N-vinyl caprolactam) in aqueous solutions. Hydrophobic hydration dominates at temperatures close to binodal curve. As a result, the mutual mixing of the polymer with water is decreased and phase separation takes place.  相似文献   

8.
The newly developed lattice cluster theory (in Paper I) for the thermodynamics of solutions of telechelic polymers is used to examine the phase behavior of these complex fluids when effective polymer-solvent interactions are unfavorable. The telechelics are modeled as linear, fully flexible, polymer chains with mono-functional stickers at the two chain ends, and these chains are assumed to self-assemble upon cooling. Phase separation is generated through the interplay of self-assembly and polymer/solvent interactions that leads to an upper critical solution temperature phase separation. The variations of the boundaries for phase stability and the critical temperature and composition are analyzed in detail as functions of the number M of united atom groups in a telechelic chain and the microscopic nearest neighbor interaction energy ε(s) driving the self-assembly. The coupling between self-assembly and unfavorable polymer/solvent interactions produces a wide variety of nontrivial patterns of phase behavior, including an enhancement of miscibility accompanying the increase of the molar mass of the telechelics under certain circumstances. Special attention is devoted to understanding this unusual trend in miscibility.  相似文献   

9.
The phase transition of poly(N‐isopropylacrylamide) (poly(NIPAM)) solutions was characterized by a dynamic fluid rheometer. Two critical points were observed below the lower critical solution temperature (LCST; ∼︁31.5°C): (1) a critical point resembling sol‐gel transition occurs at ∼︁28.5°C, not far beyond the onset of elasticity (∼︁28.2°C), and (2) a second critical point appears at ∼︁30.4 °C corresponding to the reported Flory temperature (Θ). These findings suggest that intermolecular association and coil‐globule transition of poly(NIPAM) occur below the LCST. The fractal dimension of association of poly(NIPAM) chains which was calculated based upon the rheological method (∼︁1.49) is close to that determined by static light scattering.  相似文献   

10.
The structures of aqueous copolymer solutions have been examined through small angle neutron scattering. The copolymers contained mostly N-isopropylacrylamide (NIPAM) monomers. Poly (NIPAM) solutions have a lower critical solution temperature (LCST), above which the macromolecules separate from water. A small fraction of ionizable N,N-[(dimethylamino) propyl] methacrylamide (MADAP) monomers was introduced into the macromolecules. This had dramatic consequences on the solution behavior at temperatures above the LCST of PNIPAM, where phase separation would have been expected for the homopolymer. When all MADAP monomers were ionized, it was found that the solutions resisted the phase separation. At short spatial scales, the chains were collapsed but at large scales they formed branched aggregates that did not separate out of water. When only half of the MADAP monomers are ionized, the electrical charges were able to redistribute themselves along the chains. In this case, the rise in temperature caused a microphase separation where the electrical charges were relocated on a fraction of the chains that remained in solution.The other chains (or section of chains) formed large nodules of a polymer rich phase.  相似文献   

11.
 The surfactant effect on the lower critical solution temperature (LCST) of thermosensitive poly(organophosphazenes) with methoxy-poly(ethylene glycol) and amino acid esters as side groups was examined in terms of molecular interactions between the polyphosphazenes and surfactants including various anionic, cationic, and nonionic surfactants in aqueous solution. Most of the anionic and cationic surfactants increased the LCST of the polymers: the LCST increased more sharply with increasing length and hydrophobicity of the hydrophobic part of the surfactant molecule. The ΔLCSTs (T 0.03M − T 0M), the change in the LCST by addition of 0 and 0.03 M sodium dodecyl sulfate (SDS), were found to be 7.0 and 14.5 °C for the polymers bearing ethyl esters of glycine and aspartic acid, respectively. The LCST increase of poly(organophosphazene) having a more hydrophobic aspartic acid ethyl ester was 2 times larger compared with that of the polymer having glycine ethyl ester as a side group. The binding behavior of SDS to the polymer bearing glycine ethyl ester as a hydrophobic group was explained from the results of titration of the polymer solutions containing SDS with tetrapropylammonium bromide. Graphic models for the molecular interactions of polymer/surfactant and polymer/surfactant/salt in aqueous solutions were proposed. Received: 17 February 2000/Accepted: 25 April 2000  相似文献   

12.
Critical micelle concentrations (cmc) of aqueous solutions of poly(methyl methacrylate)-block-poly(N-isopropylacrylamide) were determined at several temperatures by surface tensiometry. Below the lower critical solution temperature (LCST), the low Delta mic H 0 determined can be assigned to the PMMA block being tightly coiled in the dispersed molecular state, so that the unfavorable interactions of hydrophobic entities with water are minimized. Above the LCST the cmc value was found to increase; an anomalous behavior that can be directly related to the micelle-globule transition of the hydrophilic block. Interestingly, above the LCST the surface tension of relatively concentrated solutions was found to depend weakly on temperature not following the usual strong decrease with temperature expected for aqueous solutions.  相似文献   

13.
This article describes the pore size modification and in situ surface functionalization of macroporous crosslinked poly(dicyclopentadiene), produced by chemically induced phase separation, with norbornene‐functionalized poly(ethylene glycol) telechelic oligomers. The microstructure of the open porosity materials produced with this technique consisted of agglomerated particles. The incorporation of these telechelic oligomers allowed a substantial decrease in the pore size and a related increase in the internal surface area. These functionalized oligomers acted as stabilizers around the primary particles produced by phase separation and blocked their growth so that the materials resulting from the agglomeration of these smaller particles showed finer microstructures. The resulting porous materials were characterized by scanning electron microscopy, density measurements, nitrogen adsorption, and mercury porosimetry. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2036–2046, 2003  相似文献   

14.
Thermoresponsive sol–gel transition polymers based on biodegradable poly(amino acid) were synthesized by the reaction of poly(succinimide) with dodecylamine and amino alcohols. The introduction of the hydrophobic amine into the thermoresponsive poly(amino acid)s induced the sol–gel transition in phosphate buffer saline. The effects of the side chain structure, molecular weight, concentration of the polymer, and the additives (inorganic salts and urea) in the solution on the thermoresponsive behaviors were systematically investigated. A relationship between the lowest critical solution temperature (LCST) in the dilute solution and the viscosity reduction of the concentrated solution upon heating was observed. The present poly(amino acid)s showing a thermoresponsive sol–gel transition in aqueous solutions possess immense potential as an injectable biodegradable hydrogel system for various biomedical applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Suwa  K.  Yamamoto  K.  Akashi  M.  Takano  K.  Tanaka  N.  Kunugi  S. 《Colloid and polymer science》1998,276(6):529-533
 We examined the effects of salt on the lower critical solution temperature (LCST) and lower critical solution pressure (LCSP) of aqueous solutions of poly (N-vinylisobutyramide), polyNVIBA, and compared them with those on poly(N-isopropylacrylamide), polyNIPAAm. We found that the addition of salt (such as Na2SO4, NaCl, or KCl) decreased the LCST of aqueous polyNVIBA from 45 °C to below 20 °C, almost linearly with the salt concentrations and dependent on the type of salt. We observed a similar concentration-dependent decrease in LCST for polyNIPAAm. When KI or NaSCN was added to each aqueous polymer solution, some smaller increases in LCST were observed at relatively low salt concentrations; higher concentrations of salt gave an almost linear decrease in LCST. As for LCSP, the addition of most types of salt lowered the transition pressure, but the effects were much more dependent on the type and the valence of the salt (especially of anion) in both polymers. Salt with divalent anion showed a larger decrease in LCSP, but those with mono valent anion showed a relatively small decrease, even showed a slight increase at lower salt concentrations in the case of polyNVIBA. Salt with I- or SCN- showed evident increases in LCSP up to 1 M and was maintained higher than the control even at 2 M. We discuss the interactions of the amide group in the side chains of polymers and water and their perturbation by ions. Received: 13 November 1997 Accepted: 22 January 1998  相似文献   

16.
Absorbance values between 300 and 800 nm of aqueous solutions of poly(N-isopropyl acrylamide-co-itaconic acid-9.80), poly(N-isopropyl acrylamide-co-itaconic acid-52.05) and poly(N-isopropyl acrylamide)s containing Tegomer H-Si 2111 end groups and/or blocks were measured using a Shimadzu 160-A UV-visible spectrometer. Turbidities obtained from these absorbance values were used to interpret the macromolecular phase transition from a hydrophilic to a hydrophobic structure of the polymers. The effects of comonomer type and content, concentration of the solutions, pH and temperature on the coil-globule transition were discussed in terms of turbidity form factor, β related to size and shapes of particles and calculated by using the simplified form of Debye equation.The results presented in this work show that the presence of Tegomer H-Si 2111 (Si containing end groups and/or blocks) or high amount of itaconic acid (IA) in the chains prevent a collapse transition from hydrated extended coils to hydrophobic globules, which aggregate and form a separate phase (β<2). Furthermore, it was observed that in the case of concentrated solutions intermolecular hydrophobic interactions between isopropyl groups overcame the repulsive forces resulting from the ionized carboxylic acid groups of IA or surface active nature of Si containing hydrophobic groups (β>2). This stage of the transition corresponds to macroscopic phase separation after an intramolecular process.  相似文献   

17.
The separation of functional poly(n-butyl acrylate) (PnBA) polymers based on the number of end-groups under critical liquid chromatography (LC) conditions has been studied using a bare-silica column. The (near-) critical solvent compositions for non-, mono-, and difunctional (telechelic) carboxyl-PnBAs were determined in normal-phase LC, using mixtures of acetonitrile, acetic (or formic) acid, and dichloromethane of varying composition. Some formic or acetic acid had to be added to the mobile phase to elute PnBA polymers with carboxyl end-groups. The critical solvent compositions obtained were not exactly the same for non-, mono-, and difunctional PnBA polymers. These were unusual experimental observation, but they were in agreement with theoretic predictions. Nevertheless, low-molecular-mass PnBA samples were successfully separated according to the carboxyl functionality at (near-) critical conditions. With the aid of mass spectrometry (MS), the (near-) critical separation of low-molecular-mass PnBA polymers was confirmed to be mainly based on the carboxyl functionality. Calibration curves for evaporative light-scattering detection (ELSD) were used for quantitative analysis of carboxyl-functional PnBA polymers. The results proved that nearly ideal functionalities (average number of carboxyl end-groups per molecule up to 1.99) were achieved for telechelic PnBAs prepared by one-step reversible addition-fragmentation chain-transfer (RAFT) polymerization of PnBA.  相似文献   

18.
We investigate the effects of pH and temperature on the conformational changes of poly[2-(dimethylamino)ethyl methacrylate] (PDEM) chains at the air/water interface by using Langmuir balance and sum frequency generation vibrational spectroscopy. At pH 4, the tertiary amine groups are fully charged and the PDEM chains are so hydrophilic that they completely enter into the water phase and do not exhibit thermosensitivity. At pH 7, these groups are only partially charged, and the accompanying hydration/dehydration--followed by repartitioning into the water and air phases--gives rise to a marked thermosensitivty. Finally, at pH 10, the tertiary amine groups become uncharged and thus preferentially stay in the hydrophobic air phase, devoid of associated water molecules, which results in the surface-pressure change (DeltaPi) being nearly independent of the temperature. Our Langmuir-balance experiments, coupled with surface-sensitive spectroscopy, demonstrate that: 1) the thermosensitivity of the PDEM chains relates to the hydration/dehydration of the tertiary amine groups, 2) the phase transition of thermosensitive polymers is most likely initiated by the dehydration of the chains, and 3) the phase transition of thermosensitive polymers at the air/water interface is markedly different from that in aqueous solution because of the redistribution of the macromolecular segments induced by the asymmetric forces at the air/water interface.  相似文献   

19.
 The phase transition of aqueous solutions of poly(N,N-diethylacrylamide-co-acrylic acid) (DEAAm–AA) is studied by differential scanning calorimetry (DSC) and UV–vis spectrophotometry. The copolymer aqueous solutions are shown to have well-defined lower critical solution temperatures (LCSTs). The LCST values obtained from the maximum of the first derivatives of the DSC and optical transition curves agree well. DSC can be used to measure the phase-transition temperature of more dilute polymer solutions. On increasing the AA composition in the copolymers, the LCST values of the copolymer increase, then decrease at higher AA composition. For the aqueous solution of the copolymers, the transition curve obtained by the spectrophotometric method is highly wavelength dependent. The LCST values are found to be concentration-dependent. The changes in the heat of the phase transition of the copolymer solutions measured from DSC are lower than that of the homopolymer PDEAAm solution. This is consistent with the suggestion that the polymer chains of the copolymers collapsed only partially at temperatures above the LCST. The added salt (sodium chloride) decreases the transition temperature of the polymer solution. Received: 14 November 2000 Accepted: 15 January 2001  相似文献   

20.
Telechelic ionomeric poly(butylene terephthalate) nanocomposites with organically modified clays have been prepared by the melt intercalation technique both in Brabender mixer and in twin screw-extruder. The presence of ionic groups tethered at the end of the polymer chains permits electrostatic interaction between the polymer and the surface of an organically modified clays providing a thermodynamic driving force for the dispersion of the clay platelets in the polymer matrix. The improved dispersion has been verified by TEM and XRD analyses. Nanocomposites with telechelic polymers present therefore consistently higher thermo-mechanical properties and improved thermal and hydrolytic stability respect to nanocomposites with standard PBT. Nanocomposite obtained using PBT with 3% telechelic ionic groups and with 5% of clay present a heat deflection temperature that is 48 °C higher compared to that of the commercial material. The presence of the clay also slightly increases the thermal and hydrolytic stability respect to standard PBT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号