首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Structural and dynamical properties of Zn(II) in aqueous solution were investigated, based on an ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation at double-zeta Hartree-Fock quantum mechanical level including the first and second hydration shells into the QM region. The inclusion of the second shell in the QM region resulted in significant changes in the properties of the hydrate. The first shell coordination number was found to be 6, the second shell consists of approximately 14 water molecules. The structural properties were determined in terms of RDF, ADF, tilt and theta angle distributions, while dynamics were characterized by mean ligand residence times, ion-ligand stretching frequencies and the vibrational and librational motions of water ligands.  相似文献   

2.
Structural and dynamical properties of the Cr(III) ion in aqueous solution have been investigated using a combined ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation. The hydration structure of Cr(III) was determined in terms of radial distribution functions, coordination numbers, and angular distributions. The QM/MM simulation gives coordination numbers of 6 and 15.4 for the first and second hydration shell, respectively. The first hydration shell is kinetically very inert but by no means rigid and variations of the first hydration shell geometry lead to distinct splitting in the vibrational spectra of Cr(H(2)O)(6) (3+). A mean residence time of 22 ps was obtained for water ligands residing in the second hydration shell, which is remarkably shorter than the experimentally estimated value. The hydration energy of -1108 +/- 7 kcal/mol, obtained from the QM/MM simulation, corresponds well to the experimental hydration enthalpy value.  相似文献   

3.
The structural and dynamical properties of high-spin Ru2+ in aqueous solution have been theoretically studied using molecular dynamics (MD) simulations. The conventional MD simulation based on pair potentials gives the overestimated average first shell coordination number of 9, whereas the value of 5.9 was observed when the three-body corrected function was included. A combined ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation has been performed to take into account the many-body effects on the hydration shell structure of Ru2+. The most important region, the first hydration shell, was treated by ab initio quantum mechanics at UHF level using the SBKJC VDZ ECP basis set for Ru2+ and the 6-31G basis sets for water. An exact coordination number of 6 for the first hydration shell was obtained from the QM/MM simulation. The QM/MM simulation predicts the average Ru2+–O distance of 2.42 Å for the first hydration shell, whereas the values of 2.34 and 2.46 Å are resulted from the pair potentials without and with the three-body corrected simulations, respectively. Several other structural properties representing position and orientation of the solvate molecules were evaluated for describing the hydration shell structure of the Ru2+ ion in dilute aqueous solution. A mean residence time of 7.1 ps was obtained for water ligands residing in the second hydration shell.  相似文献   

4.
The hydration structure of Cr(2+) has been studied using molecular dynamics (MD) simulations including three-body corrections and combined ab initio quantum mechanical/molecular mechanical (QM/MM) MD simulations at the Hartree-Fock level. The structural properties are determined in terms of radial distribution functions, coordination numbers, and several angle distributions. The mean residence time was evaluated for describing ligand exchange processes in the second hydration shell. The Jahn-Teller distorted octahedral [Cr(H(2)O)(6)](2+) complex was pronounced in the QM/MM MD simulation. The first-shell distances of Cr(2+) are in the range of 1.9-2.8 A, which are slightly larger than those observed in the cases of Cu(2+) and Ti(3+). No first-shell water exchange occurred during the simulation time of 35 ps. Several water-exchange processes were observed in the second hydration shell with a mean residence time of 7.3 ps.  相似文献   

5.
Classical molecular dynamics (MD) and combined quantum mechanical/molecular mechanical (QM/MM) MD simulations have been performed to investigate the structural and dynamical properties of the Tl(III) ion in water. A six-coordinate hydration structure with a maximum probability of the Tl-O distance at 2.21 A was observed, which is in good agreement with X-ray data. The librational and vibrational spectra of water molecules in the first hydration shell are blue-shifted compared with those of pure liquid water, and the Tl-O stretching force constant was evaluated as 148 Nm(-1). Both structural and dynamical properties show a distortion of the first solvation shell structure. The second shell ligands' mean residence time was determined as 12.8 ps. The Tl(III) ion can be classified as "structure forming" ion; the calculated hydration energy of -986 +/- 9 kcal mol agrees well with the experimental value of -986 kcal mol.  相似文献   

6.
An ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulation at double-zeta restricted Hartree-Fock (RHF) level was performed at 293.15 K, including first and second hydration shell in the QM region to study the structural and dynamical properties of the Be(II)-hydrate in aqueous solution. The first tetrahedrally arranged hydration shell, with the four water molecules located at a mean Be-O distance of 1.61 A, is highly inert with respect to ligand exchange processes. The second shell, however, consisting in average of approximately 9.2 water ligands at a mean Be-O distance of 3.7 A and the third shell at a mean Be-O distance of 5.4 A with approximately 19 ligands rapidly exchange water molecules between them and with the bulk, respectively. Other structural parameters such as radial and angular distribution functions (RDF and ADF) and tilt- and theta-angle distributions were also evaluated. The dynamics of the hydrate were studied in terms of ligand mean residence times (MRTs) and librational and vibrational frequencies. The mean residence times for second shell and third shell ligands were determined as 4.8 and 3.2 ps, respectively. The Be-O stretching frequency of 658 cm(-1), associated with a force constant of 147 N m(-1) could be overestimated but it certainly reflects the exceptional stability of the ion-ligand bond in the first hydration shell.  相似文献   

7.
8.
Structural properties of the hydrated Rb(I) ion have been investigated by ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations at the double-zeta HF quantum mechanical level. The first shell coordination number was found to be 7.1, and several other structural parameters such as angular distribution functions, radial distribution functions and tilt- and theta-angle distributions allowed the full characterization of the hydration structure of the Rb(I) ion in dilute aqueous solution. Velocity autocorrelation functions were used to calculate librational and vibrational motions, ion-ligand motions, as well as reorientation times. Different dynamical parameters such as water reorientation, mean ligand residence time, the number of ligand exchange processes, and rate constants were also analyzed. The mean ligand residence time for the first shell was determined as tau = 2.0 ps.  相似文献   

9.
Despite the large number of experimental as well as theoretical investigations available in the literature, some properties of the hydration structure of Sr(II), for example, the coordination number, are still ambiguous. The presented molecular dynamics study based on a most suitable ab initio QM/MM protocol allowed a detailed investigation of structural and dynamical properties of this hydrate, which shows a considerable degree of internal flexebility as well as ligand mobility within the first shell. Despite the high computational effort an exceptionally long QM/MM simulation had to be carried out to obtain sufficient information to investigate first shell ligand exchange reactions.  相似文献   

10.
Hydration structure and dynamics of an aqueous Sc(iii) solution were characterized by means of an extended ab initio quantum mechanical/molecular dynamical (QM/MM) molecular dynamics simulation at Hartree-Fock level. A monocapped trigonal prismatic structure composed of seven water molecules surrounding scandium(iii) ion was proposed by the QM/MM simulation including the quantum mechanical effects for the first and second hydration shells. The mean Sc(iii)-O bond length of 2.14 ? was identified for six prism water molecules with one capping water located at around 2.26 ?, reproducing well the X-ray diffraction data. The Sc(iii)-O stretching frequency of 432 cm(-1) corresponding to a force constant of 130 N m(-1), evaluated from the enlarged QM/MM simulation, is in good agreement with the experimentally determined value of 430 cm(-1) (128 N m(-1)). Various water exchange processes in the second hydration shell of the hydrated Sc(iii) ion predict a mean ligand residence time of 7.3 ps.  相似文献   

11.
Results of ab initio molecular dynamics (AIMD), quantum mechanics/molecular mechanics (QM/MM), and classical molecular dynamics (CMD) simulations of Cm(3+) in liquid water at a temperature of 300 K are reported. The AIMD simulation was based on the Car-Parrinello MD scheme and GGA-PBE formulation of density functional theory. Two QM/MM simulations were performed by treating Cm(3+) and the water molecules in the first shell quantum mechanically using the PBE (QM/MM-PBE) and the hybrid PBE0 density functionals (QM/MM-PBE0). Two CMD simulations were carried out using ab initio derived pair plus three-body potentials (CMD-3B) and empirical Lennard-Jones pair potential (CMD-LJ). The AIMD and QM/MM-PBE simulations predict average first shell hydration numbers of 8, both of which disagree with recent experimental EXAFS and TRLFS value of 9. On the other hand, the average first shell hydration numbers obtained in the QM/MM-PBE0 and CMD simulations was 9, which agrees with experiment. All the simulations predicted an average first shell and second shell Cm-O bond distance of 2.49-2.53 ? and 4.67-4.75 ? respectively, both of which are in fair agreement with corresponding experimental values of 2.45-2.48 and 4.65 ?. The geometric arrangement of the 8-fold and 9-fold coordinated first shell structures corresponded to the square antiprism and tricapped trigonal prisms, respectively. The second shell hydration number for AIMD QM/MM-PBE, QM/MM-PBE0, CMD-3B, and CMD-LJ, were 15.8, 17.2, 17.7, 17.4, and 16.4 respectively, which indicates second hydration shell overcoordination compared to a recent EXAFS experimental value of 13. Save the EXAFS spectra CMD-LJ simulation, all the computed EXAFS spectra agree fairly well with experiment and a clear distinction could not be made between configurations with 8-fold and 9-fold coordinated first shells. The mechanisms responsible for the first shell associative and dissociative ligand exchange in the classical simulations have been analyzed. The first shell mean residence time was predicted to be on the nanosecond time scale. The computed diffusion constants of Cm(3+) and water are in good agreement with experimental data.  相似文献   

12.
13.
《Chemical physics letters》2003,367(5-6):586-592
Dynamical properties, librational and vibrational motions of water molecules in the first and second hydration shells of the Fe(II) and Fe(III) ion were evaluated by means of velocity autocorrelation functions obtained by combined quantum mechanical/molecular mechanical molecular dynamics (QM/MM-MD) simulations. The frequencies of rotation around three principal axes and the frequencies of intramolecular vibration of the water molecules in the first hydration shells obtained from the simulations are blue-shifted for both ions compared to those observed experimentally for liquid water. The intramolecular geometry of water molecules in the quantum mechanically treated region (ion plus first hydration shell) shows shorter O–H bonds and wider H–O–H angles than the bulk solvent.  相似文献   

14.
15.
The CuII hydration shell structure has been studied by means of classical molecular dynamics (MD) simulations including three-body corrections and hybrid quantum-mechanical/molecular-mechanical (QM/MM) molecular dynamics (MD) simulations at the Hartree–Fock level. The copper(II ) ion is found to be six-fold coordinated and [Cu(H2O)6]2+ exhibits a distorted octahedral structure. The QM/MM MD approach reproduces correctly the experimentally observed Jahn–Teller effect but exhibits faster inversions (<200 fs) and a more complex behaviour than expected from experimental data. The dynamic Jahn–Teller effect causes the high lability of [Cu(H2O)6]2+ with a ligand-exchange rate constant some orders of magnitude higher than its neighbouring ions NiII and ZnII. Nevertheless, no first-shell water exchange occurred during a 30-ps simulation. The structure of the hydrated ion is discussed in terms of radial distribution functions, coordination numbers, and various angular distributions and the dynamical properties as librational and vibrational motions and reorientational times were evaluated, which lead to detailed information about the first hydration shell. Second-shell water-exchange processes could be observed within the simulation time scale and yielded a mean ligand residence time of ≈20 ps.  相似文献   

16.
We present new Lennard-Jones parameters for Cd2+ and Pb2+ ion-water interactions and describe a general methodology to obtain these parameters for any ion. Our strategy is based on the adjustment of ion parameters to reproduce simultaneously experimental absolute hydration free energy and structural properties, namely, g(r) and coordination numbers, obtained from X-ray liquid scattering and quantum mechanical/molecular mechanical (QM/MM) calculations. The validation of the obtained parameters is made by the calculation of dynamical properties and comparing them with experimental values and theoretical results from the literature. The transferability of parameters is checked by the calculation of thermodynamic, structural, and dynamical properties cited above with four different water models. The results obtained for Cd2+ and Pb2+ show an overall agreement with reference values. The absolute hydration free energy calculated with the TIP3P, SPC/E, SPC, and TIP4P water models presents, respectively, percent differences of 3.8, 3.0, 4.3, and 7.2% for lead(II) and 9.8, 8.4, 10.2, and 14.1% for cadmium(II) when compared with experimental values. Ion-water mean distance and coordination numbers for the first coordination shell are in good agreement with experimental and QM/MM results for both ions. Cd2+ shows a lesser diffusion coefficient compared to that of Pb2+ despite its smaller atomic radius, indicating a more persistent first coordination shell for the cadmium(II) ion, a result confirmed with calculations of the mean residence time of water molecules in the first coordination shell.  相似文献   

17.
18.
Structure and dynamics of hydrated Au(+) have been investigated by means of molecular dynamics simulations based on ab initio quantum mechanical molecular mechanical forces at Hartree-Fock level for the treatment of the first hydration shell. The outer region of the system was described using a newly constructed classical three-body corrected potential. The structure was evaluated in terms of radial and angular distribution functions and coordination number distributions. Water exchange processes between coordination shells and bulk indicate a very labile structure of the first hydration shell whose average coordination number of 4.7 is a mixture of 3-, 4-, 5-, 6-, and 7-coordinated species. Fast water exchange reactions between first and second hydration shell occur, and the second hydration shell is exceptionally large. Therefore, the mean residence time of water molecules in the first hydration shell (5.6 ps/7.5 ps for t*= 0.5 ps/2.0 ps) is shorter than that in the second shell (9.4 ps/21.2 ps for t*= 0.5 ps/2.0 ps), leading to a quite specific picture of a "structure-breaking" effect.  相似文献   

19.
The structural and dynamical properties of NO3- in dilute aqueous solution have been investigated by means of two combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations, namely HF/MM and B3LYP/MM, in which the ion and its surrounding water molecules were treated at HF and B3LYP levels of accuracy, respectively, using the DZV+ basis set. On the basis of both HF and B3LYP methods, a well-defined first hydration shell of NO3- is obtainable, but the shell is quite flexible and the hydrogen-bond interactions between NO3- and water are rather weak. With respect to the detailed analysis of the geometrical arrangement and vibrations of NO3-, the experimentally observed solvent-induced symmetry breaking of the ion is well reflected. In addition, the dynamical information, i.e., the bond distortions and shifts in the corresponding bending and stretching frequencies as well as the mean residence time of water molecules surrounding the NO3- ion, clearly indicates the "structure-breaking" ability of this ion in aqueous solution. From a methodical point of view it seems that both the HF and B3LYP methods are not too different in describing this hydrated ion by means of a QM/MM simulation. However, the detailed analysis of the dynamics properties indicates a better suitability of the HF method compared to the B3LYP-DFT approach.  相似文献   

20.
A combined ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation has been performed to investigate solvation structure and dynamics of NH(4) (+) in water. The most interesting region, the sphere includes an ammonium ion and its first hydration shell, was treated at the Hartree-Fock level using DZV basis set, while the rest of the system was described by classical pair potentials. On the basis of detailed QM/MM simulation results, the solvation structure of NH(4) (+) is rather flexible, in which many water molecules are cooperatively involved in the solvation shell of the ion. Of particular interest, the QM/MM results show fast translation and rotation of NH(4) (+) in water. This phenomenon has resulted from multiple coordination, which drives the NH(4) (+) to translate and rotate quite freely within its surrounding water molecules. In addition, a "structure-breaking" behavior of the NH(4) (+) is well reflected by the detailed analysis on the water exchange process and the mean residence times of water molecules surrounding the ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号