首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Liquid crystals (LCs) encapsulated in monodisperse micron-sized polymer particles were prepared to control the size and size distribution of LC droplets in polymer-dispersed LCs. The poly(methyl methacrylate) (PMMA) seed particles were swollen with the mixture of liquid crystal, monomers (methyl methacrylate and styrene) and initiator by using a diffusion-controlled swelling method. A single LC domain was produced by the phase separation between PMMA and LC through polymerization. The optical microscopy and scanning electron microscopy showed that the particles are highly monodisperse with core–shell structure. Moreover, monodisperse LC core domains were confirmed from polarized optical microscope observations. The final particle morphology was influenced by the cross-linking of the seed particle. When linear PMMA particles, which are not cross-linked, were used as a seed, the microcapsules were distorted after annealing for a few days; however, in the case of cross-linked PMMA particles, the core–shell structure was sustained stably after annealing. Received: 22 November 2000 Accepted: 12 March 2001  相似文献   

2.
We report dual pH‐responsive microcapsules manufactured by combining electrostatic droplets (ESD) and microfluidic droplets (MFD) techniques to produce monodisperse core (alginate)‐shell (chitosan) structure with dual pH‐responsive drug release function. The fabricated core‐shell microcapsules were size controllable by tuning the synthesis parameters of the ESD and MFD systems, and were responsive in both acidic and alkaline environment, We used two model drugs (ampicillin loaded in the chitosan shell and diclofenac loaded in the alginate core) for drug delivery study. The results show that core‐shell structure microcapsules have better drug release efficiency than respective core or shell particles. A biocompatibility test showed that the core‐shell structure microcapsules presented positive cell viability (above 80%) when evaluated by the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay. The results indicate that the synthesized core‐shell microcapsules were a potential candidate of dual‐drug carriers.  相似文献   

3.
Since Professor Matijevité and his colleagues published pioneering work on aerosol chemical reactions, based on experiments with monodisperse aerosol generators and laminar flow reactors, there has been considerable progress in the chemical characterization of aerosol particles and the study of their chemical reactions. This paper surveys recent developments and new research on the application of Raman spectroscopy to gas/liquid and gas/solid aerosol reactions. Of particular interest are applications of the vibrating orifice aerosol generator and electrodynamic and optical levitators coupled to Raman spectrometers to explore aerosol chemistry. The systems examined include the production of polymeric microsphcrcs, the generation of metal oxide particles from alkoxide droplets, SQ2/sorbent particle reactions used for demilitarization of stick gases, chemical characterization of particle arrays, and reactions following collisions of dissimilar particles. The complications associated with the interpretation of Raman data introduced by morphology-dependent resonances in the elastically scattered light are also examined.  相似文献   

4.
Microcapsules with an oil core surrounded by a polymeric shell have been prepared by the controlled phase separation of polymer dissolved within the oil droplets of an oil-in-water emulsion. The dispersed oil phase consists of the shell polymer (polystyrene), a good solvent for the polymer (dichloromethane), and a poor solvent for the polymer (typically hexadecane). Removal of the good solvent results in phase separation of the polymer within the oil droplets. If the three interfacial tensions between the core oil, the shell-forming polymer, and the continuous phase are of the required relative magnitudes, a polymer shell forms surrounding the poor solvent. A UV-responsive organic molecule was added to the oil phase, prior to emulsification, to investigate the release of a model active ingredient from the microcapsules. This molecule should be soluble in the organic core but also have some water solubility to provide a driving force for release into the continuous aqueous phase. As the release rate of the active ingredient is a function of the thickness of the polymeric shell, for controlled release applications, it is necessary to control this parameter. For the preparative method described here, the thickness of the shell formed is directly related to the mass of polymer dissolved in the oil phase. The rate of volatile solvent removal influences the porosity of the polymer shell. Rapid evaporation leads to cracks in the shell and a relatively fast release rate of the active ingredient. If a more gentle evaporation method is employed, the porosity of the polymer shell is decreased, resulting in a reduction in release rate. Cross-linking the polymer shell after capsule formation was also found to decrease both the release rate and the yield of the active ingredient. The nature of the oil core also affected the release yield.  相似文献   

5.
We introduce a facile and versatile approach for the formation of ball-like polymer–inorganic patchy microcapsules with a tunable shell by combining sol–gel chemistry of silica precursor and phase separation between the polymer and the precursor. Firstly, chloroform-in-water emulsion droplets containing poly(methyl methacrylate) (PMMA), silica precursor [tetraethyl orthosilicate (TEOS)] and co-surfactant sodium dioctyl sulfosuccinate (Aerosol OT or AOT) were prepared by shaking the mixture by hand. Due to the added AOT, water molecules diffuse into the chloroform droplets, and the tiny water droplets would coalesce gradually, triggering the formation of double emulsion droplets. Upon further solvent evaporation, the concentration of the polymer and the silica precursor in the oil shell of the double emulsions increases, leading to the phase separation between the polymer and the precursors (and partially formed silica through the hydrolysis and condensation of TEOS). Because of the confined geometry of the oil shell in the double emulsions, polymeric disc-like structures, stabilized by AOT, were dispersed in the silica precursors. Meanwhile, the silica precursor hydrolyzed and condensed when brought in contact with the aqueous solution, ultimately leading to the formation of a mineralized shell around the polymer domains and the hybrid patchy microcapsules. Effect of synthesis conditions, such as the amount of TEOS, AOT, and PMMA used, the pH value, and solvent evaporation rate on interfacial behavior of the solvent/water; and the morphology of the patchy microcapsules were investigated. Patchy microcapsules with tunable patch size and shape can be generated through tailoring the experimental parameters. Our study indicates that the hybrid patchy microcapsules can be formed by taking advantage of the sol–gel chemistry and the phase separation process, and the underlying generality of the synthesis procedure allows for a variety of applications, including drug storage, coatings, delivery, catalysis, and smart building blocks in self-assembling systems.  相似文献   

6.
We developed a process to fabricate 150-700 nm monodisperse polymer particles with 100-500 nm hollow cores. These hollow particles were fabricated via dispersion polymerization to synthesize a polymer shell around monodisperse SiO(2) particles. The SiO(2) cores were then removed by HF etching to produce monodisperse hollow polymeric particle shells. The hollow core size and the polymer shell thickness, can be easily varied over significant size ranges. These hollow polymeric particles are sufficiently monodisperse that upon centrifugation from ethanol they form well-ordered close-packed colloidal crystals that diffract light. After the surfaces are functionalized with sulfonates, these particles self-assemble into crystalline colloidal arrays in deionized water. This synthetic method can also be used to create monodisperse particles with complex and unusual morphologies. For example, we synthesized hollow particles containing two concentric-independent, spherical polymer shells, and hollow silica particles which contain a central spherical silica core. In addition, these hollow spheres can be used as template microreactors. For example, we were able to fabricate monodisperse polymer spheres containing high concentrations of magnetic nanospheres formed by direct precipitation within the hollow cores.  相似文献   

7.
The electrochemical synthesis of poly(p-phenylenevinylene) (PPV) and different modifications in the electronic distribution upon electrochemical p-doping (oxidation) and n-doping (reduction) of this polymer film have been studied in situ by resonance Raman spectroscopy, optical absorption spectroscopy and ESR spectroscopy. The polymer film has been prepared by electrochemical reduction of α,α,α′,α′-tetrabromo-p-xylene in dimethylformamide using tetraethylammonium tetrafluoroborate as the electrolyte salt. During electrochemical polymerization the position and relative intensities of the Raman bands change regularly as the chain length increases and finally converge on values reported for chemically prepared PPV. The Raman spectra for electrochemically polymerized PPV is compared to infrared-active vibration bands for electrochemically n-doped PPV. When the polymer undergoes redox reactions (doping-dedoping), shifts and broadening of Raman bands, compared to neutral PPV, are observed. Interpretation of the Raman spectra and the ESR results led to the conclusion that charge transfer in this system is mainly accomplished by polaron species formed upon doping of the polymer. In this reaction the quinoid structure is formed rather than the benzenoid structure. Electronic Publication  相似文献   

8.
The microcapsules with interpenetrating polymer network (IPN) structure based on crosslinked poly (N-isopropylacrylamide) (PNIPAM) and crosslinked poly (acrylic acid) (PAA) were fabricated in a three-step process. Firstly, silica/PNIPAM core/shell composite particles were synthesized by thermo-initiated seed precipitation polymerization using 3-(trimethoxysilyl)propyl methacrylate modified silica colloidal particles as seeds and N-isopropylacrylamide and N,N′-methylenebisacrylamide (MBA) as monomer and crosslinker, respectively. Secondly, PAA network was incorporated into the shell of the composite particles by redox-initiated polymerization of acrylic acid and MBA entrapped in the PNIPAM network. Finally, the silica core of the composite particles was removed using hydrofluoric acid under certain condition to produce the microcapsules. The chemical compositions, their mass ratio, and particle sizes of the particles formed in each step were determined by Fourier transformation infrared spectroscopy, thermogravimetry, and dynamic laser light scattering (DLLS), respectively. The IPN structure of the microcapsules was identified by transmission electron microscopy (TEM) using uranyl acetate staining method, and their hollow structure was evidenced by TEM and scanning electron microscopy. Their temperature- or pH-dependent hydrodynamic diameters were measured by DLLS, and the results showed that the microcapules had both pH- and temperature-responsive properties, and the temperature-responsive component and the pH-responsive component inside the microcapsule shell had little interference with each other.  相似文献   

9.
Responsive core-shell latex particles are used to prepare colloidosome microcapsules using thermal annealing and internal cross linking of the shell, allowing the production of the microcapsules at high concentrations. The core-shell particles are composed of a polystyrene core and a shell of poly[2-(dimethylamino)ethyl methacrylate]-b-poly[methyl methacrylate] (PDMA-b-PMMA) chains adsorbed onto the core surface, providing steric stabilization. The PDMA component of the adsorbed polymer shell confers thermally responsive and pH-responsive characteristics to the latex particle, and it also provides glass transitions at temperatures lower than those of the core and reactive amine groups. These features facilitate the formation of stable Pickering emulsion droplets and the immobilization of the latex particle monolayer on these droplets to form colloidosome microcapsules. The immobilization is achieved through thermal annealing or cross linking of the shell under mild conditions feasible for large-scale economic production. We demonstrate here that it is possible to anneal the particle monolayer on the emulsion drop surface at 75-86 °C by using the lower glass-transition temperature of the shell compared to that of the polystyrene cores (~108 °C). The colloidosome microcapsules that are formed have a rigid membrane basically composed of a densely packed monolayer of particles. Chemical cross linking has also been successfully achieved by confining a cross linker within the disperse droplet. This approach leads to the formation of single-layered stimulus-responsive soft colloidosome membranes and provides the advantage of working at very high emulsion concentrations because interdroplet cross linking is thus avoided. The porosity and mechanical strength of the microcapsules are also discussed here in terms of the observed structure of the latex particle monolayers forming the capsule membrane.  相似文献   

10.
We use single emulsions as templates to fabricate monodisperse biocompatible microcapsules with a water core. These microcapsules are fabricated using FDA-approved polymer and non-toxic solvents and are of great use in drugs, cosmetics and foods.  相似文献   

11.
Hollow polymer microparticles with a single opening on the surface were formed by freeze-drying aqueous polymer colloids swollen with solvent. The results show that the particle morphology is due to phase separation in the polymer emulsion droplets upon freezing in liquid nitrogen, and that morphological changes are driven largely by lowering interfacial free energy. The effects of added surfactant, volume fraction of solvent, type of solvent, and processing conditions on the particle morphology were examined and compared to theoretical predictions. The dried hollow particles were resuspended in a dispersing media and exposed to a second swelling solvent to close the surface opening and form microcapsules. The interfacial free energy difference between the inside and outside surfaces is the driving force for closing the hole on the surface. The emulsification/freeze-drying technique can be used to encapsulate hydrophilic additives in the core of the microcapsules, demonstrating the potential of the technique in controlled-release applications.  相似文献   

12.
We demonstrate that nonlinear Raman spectroscopy coupled with aerosol optical tweezers can be used to probe the evolving phase partitioning in mixed organic/inorganic/aqueous aerosol droplets that adopt a core-shell structure in which the aqueous phase is coated in an organic layer. Specifically, we demonstrate that the characteristic fingerprint of wavelengths at which stimulated Raman scattering is observed can be used to assess the phase behavior of multiphase decane/aqueous sodium chloride droplets. Decane is observed to form a layer on the surface of the core aqueous droplet, and from the spectroscopic signature the aqueous core size can be determined with nanometer accuracy and the thickness of the decane layer with an accuracy of +/-8 nm. Further, the presence of the organic layer is observed to reduce the rate at which water evaporates from the core of the droplet with an increasing rate of evaporation observed with diminishing layer thickness.  相似文献   

13.
 Micron-sized, monodisperse polystyrene (PS)/glycidyl methacrylate–divinylbenzene copolymer core/shell composite particles having epoxy groups in the shells were produced by seeded dispersion copolymerization of glycidyl methacrylate and divinylbenzene in an ethanol/water medium with 1.65-μm-sized, monodisperse PS seed particles. By chemical modifications of epoxy groups with sodium hydrogensulfite and dimethylamine, composite polymer particles having sulfonate and dimethylamino groups, respectively, in the shells were prepared. Received: 13 September 2000 Accepted: 31 January 2001  相似文献   

14.
Microgel capsules are micrometer‐sized particles that consist of a cross‐linked, solvent‐swollen polymer network complexed with additives. These particles have various applications, such as drug delivery, catalysis, and analytics. To optimize the performance of microgel capsules, it is crucial to control their size, shape, and content of encapsulated additives with high precision. There are two classes of microgel‐capsule structures. One class comprises bulk microcapsules that consist of a polymer network spanning the entire particle and entrapping the additive within its meshes. The other class comprises core–shell structures; in this case, the microgel polymer network just forms the shell of the particles, whereas their interior is hollow and hosts the encapsulated payload. Both types of structures can be produced with exquisite control by droplet‐based microfluidic templating followed by subsequent droplet gelation. This article highlights some early and recent achievements in the use of this technique to tailor soft microgel capsules; it also discusses applications of these particles. A special focus is on the encapsulation of living cells, which are very sensitive and complex but also very useful additives for immobilization within microgel particles.  相似文献   

15.
在导电聚合物含量较小时,含核壳结构的导电聚合物复合粒子就可以具有和本体相当的导电率,且加工性好,近年来这种核壳结构微粒的制备已引起了科学家们的广泛关注.Armes等[制备了导电聚吡咯、导电聚苯胺包覆聚苯乙烯的核壳结构胶体粒子及聚苯胺和二氧化硅的纳米复合物.刘正平等用改进的方法在粒径为116nm的单分散聚苯乙烯乳胶粒子上包覆聚吡咯,  相似文献   

16.
We have examined photopolymerization of highly monodisperse microdroplets of monomer solutions under UV-light radiation. Microdroplets were generated using a modified vibrating aerosol generator, and the diameter of the droplets can be tuned to any size between 5 to 100 m. Polymer particles derived from the droplets were characterized by optical microscopy and SEM. The results show that the polymer particles, under optimum conditions, can be highly spherical and monodisperse. The diameter and morphology of resulting microspheres depend on the diameter of the monomer solution droplets, monomer concentration, photopolymerization reaction temperature, residence time, and droplet dispersion.  相似文献   

17.
Paraffin core/polystyrene shell microcapsules were prepared by in situ polymerization, the formation process of the microcapsules was monitored using confocal laser scanning fluorescence microscope (CLSM) and scanning electron microscopy (SEM). Three-dimensional images were reconstructed with CLSM, which presented the early stage morphology transformation process of the microcapsules along with polymerization as described below: firstly, the separated patch appeared on the equator of the emulsified droplets, next congregated to form a belt, and then changed into a bowl-like structure. SEM observation clearly revealed that the subsequent morphologies of the microcapsules turned into a shell with a hole, and finally, a complete filled shell was achieved. The conversion of styrene was studied by Fourier transform infrared spectroscopy. The formation process of microcapsules was proved to be formed by the two processes: chemical reaction-induced separation and physical migration. Furthermore the mechanics analysis was conducted on the intermediate states of core/shell particles. The results were consistent with the CLSM and SEM observation, which supply effective evidence for the mechanism of the microcapsule-forming process on the basis of particles rotation.  相似文献   

18.
This study describes the application of Raman spectroscopy to the detection of drugs of abuse and noncontrolled substances used in the adulteration of drugs of abuse on human nail. Contamination of the nail may result from handling or abusing these substances. Raman spectra of pure cocaine hydrochloride, a seized street sample of cocaine hydrochloride (77%), and paracetamol could be acquired from drug crystals on the surface of the nail. An added difficulty in the analytical procedure is afforded by the presence of a nail varnish coating the nail fragment. By using confocal Raman spectroscopy, spectra of the drugs under nail varnish could be acquired. Spectra of the drugs could be readily obtained nondestructively within three minutes with little or no sample preparation. Raman spectra could be acquired from drug particles with an average size of 5–20 μm. Acquisition of Raman point maps of crystals from both pure and street samples of cocaine hydrochloride under nail varnish is also reported. Figure Raman spectrum and point Raman map of cocaine HCI  相似文献   

19.
Choi CH  Jung JH  Kim DW  Chung YM  Lee CS 《Lab on a chip》2008,8(9):1544-1551
We present a simple one-pot synthetic approach for the preparation of monodisperse thermo-sensitive poly(N-isopropylacrylamide) (PNIPAM) microcapsules in a microfluidic system. Based on the mechanism of shear force-driven break-off, aqueous droplets of monomer solution are continuously generated in an immiscible continuous phase containing photoinitiators. Under UV irradiation, activated initiators are diffused into the interface between the continuous phase and the aqueous droplets, which trigger polymerization of NIPAM monomers. The PNIPAM microcapsules produced are hollow microcapsules with a thin shell membrane, high monodispersity, and fast response to environmental temperature. In addition, the size of microcapsules produced can be manipulated by the flow rate of the continuous phase or aqueous phase and different concentrations of surfactant to control interfacial tension between continuous phase and aqueous phase. Furthermore, the versatility of this approach enables the preparation of monodisperse microcapsules having the capability to encapsulate various materials such as proteins and nanoparticles under mild conditions. The in situ microfluidic synthetic method provides a novel approach for the preparation of monodisperse hollow microcapsules via a one-pot route.  相似文献   

20.
 Core–shell latex particles made of a poly(butyl methacrylate) (PBMA) core and a thin polypyrrole (PPy) shell were synthesized by two-stage polymerization. In the first stage, PBMA latex particles were synthesized in a semicontinuous process by free-radical polymerization. PBMA latex particles were labeled either with an energy donor or with an energy acceptor, in two different syntheses. These particles were used in a second stage as seeds for the synthesis of the core–shell particles. The PPy shell was polymerized around the PBMA core latex in an oxidative chemical in situ polymerization. Proofs for the success of the core–shell synthesis were obtained using nonradiative energy transfer (NRET) and atomic force microscopy (AFM). NRET gives access to the rate of polymer chain migration between adjacent particles in a film annealed at a temperature above the glass-transition temperature T g of the particles. Slower chain migration of the PBMA polymer chains was obtained with the PBMA–PPy core–shell particles compared to rate of the PBMA polymer chain migration found with the pure, uncoated PBMA particles. This result is due to the coating of PBMA by PPy, which hinders the migration of the PBMA polymer chains between adjacent particles in the film. This observation has been confirmed by AFM measurements showing that the flattening of the latex film surface is much slower for the core–shell particles than for the pure PBMA particles. This result can again be explained by the presence of a rigid PPy shell around the PBMA core. Thus, these two complementary methods have given evidence that real core–shell particles were synthesized and that the shell seriously hinders film formation of the particles in spite of the fact that it is very thin (thickness close to 1 nm) compared to the size (750 and 780 nm in diameter) of the PBMA core. Transparency measurements confirm the results obtained by NRET and AFM. When the films are placed at a temperature higher than the T g of PBMA, the increase in transparency is faster for films made with the uncoated PBMA particles than for films made with the coated PBMA particles. This result indicates again that the presence of the rigid PPy layer around the PBMA core reduces considerably the speed at which the structure of the film is modified when heated above the T g of PBMA. Received: 02 September 1999 Accepted: 21 December 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号