首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 699 毫秒
1.
In this study, a two‐scale low‐Reynolds number turbulence model is proposed. The Kolmogorov turbulence time scale, based on fluid kinematic viscosity and the dissipation rate of turbulent kinetic energy (ν, ε), is adopted to address the viscous effects and the rapid increasing of dissipation rate in the near‐wall region. As a wall is approached, the turbulence time scale transits smoothly from a turbulent kinetic energy based (k, ε) scale to a (ν, ε) scale. The damping functions of the low‐Reynolds number models can thus be simplified and the near‐wall turbulence characteristics, such as the ε distribution, are correctly reproduced. The proposed two‐scale low‐Reynolds number turbulence model is first examined in detail by predicting a two‐dimensional channel flow, and then it is applied to predict a backward‐facing step flow. Numerical results are compared with the direct numerical simulation (DNS) budgets, experimental data and the model results of Chien, and Lam and Bremhorst respectively. It is proved that the proposed two‐scale model indeed improves the predictions of the turbulent flows considered. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
This paper deals with the problem of using sensitivity analysis for fluid mechanics solutions to the constants of the standard k–ε method for 2D, incompressible and steady flows. The problem is described and analysed on the basis of a channel flow. Sensitivity coefficients of the following properties were determined: a pressure, two components of a velocity, a turbulence kinetic energy, a dissipation rate of turbulence kinetic energy and a turbulence dynamic viscosity. The calculated property values depend on five model constants that are parameters of the sensitivity analysis in this paper. Sensitivity coefficients are derivatives of the above properties, for individual parameters. In this paper these coefficients are determined using a finite difference approximation to the sensitivities coefficients. The author of this paper compares three models of the boundary layer with regard to the sensitivity of properties to the parameters. Irrespective of the boundary layer model used here, the analysis of sensitivity coefficients for the channel flow properties shows that the most sensitive property is the turbulence dissipation rate. Next properties of consequence, although of significantly smaller values of sensitivity coefficients, are the turbulence viscosity and the turbulence kinetic energy. All flow properties are mostly sensitive to the Cµ parameter. One of the final conclusions in this paper is that the analysis of sensitivity coefficient fields allows the reliable checking of results and indicates those areas most prone to calculation difficulties. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
A computational method has been developed to predict the turbulent Reynolds stresses and turbulent heat fluxes in ducts by different turbulence models. The turbulent Reynolds stresses and other turbulent flow quantities are predicted with a full Reynolds stress model (RSM). The turbulent heat fluxes are modelled by a SED concept, the GGDH and the WET methods. Two wall functions are used, one for the velocity field and one for the temperature field. All the models are implemented for an arbitrary three‐dimensional channel. Fully developed condition is achieved by imposing cyclic boundary conditions in the main flow direction. The numerical approach is based on the finite volume technique with a non‐staggered grid arrangement. The pressure–velocity coupling is handled by using the SIMPLEC‐algorithm. The convective terms are treated by the van Leer scheme while the diffusive terms are handled by the central‐difference scheme. The hybrid scheme is used for solving the ε equation. The secondary flow generation using the RSM model is compared with a non‐linear kε model (non‐linear eddy viscosity model). The overall comparison between the models is presented in terms of the friction factor and Nusselt number. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
The standard k–ε eddy viscosity model of turbulence in conjunction with the logarithmic law of the wall has been applied to the prediction of a fully developed turbulent axisymmetric jet impinging within a semi-confined space. A single geometry with a Reynolds number of 20,000 and a nozzle-to-plate spacing of two diameters has been considered with inlet boundary conditions based on measured profiles of velocity and turbulence. Velocity, turbulence and heat transfer data have been obtained using laser–Doppler anemometry and liquid crystal thermography respectively. In the developing wall jet, numerical results of heat transfer compare to within 20% of experiment where isotropy prevails and the trends in turbulent kinetic energy are predicted. However, stagnation point heat transfer is overpredicted by about 300%, which is attributed directly to the turbulence model and inapplicability of the wall function.  相似文献   

5.
The gridless smoothed particle hydrodynamics (SPH) method is now commonly used in computational fluid dynamics (CFD) and appears to be promising in predicting complex free‐surface flows. However, increasing flow complexity requires appropriate approaches for taking account of turbulent effects, whereas some authors are still working without any turbulence closure in SPH. A review of recently developed turbulence models adapted to the SPH method is presented herein, from the simplistic point of view of a one‐equation model involving mixing length to more sophisticated (and thus realistic) models like explicit algebraic Reynolds stress models (EARSM) or large eddy simulation (LES). Each proposed model is tested and validated on the basis of schematic cases for which laboratory data, theoretical or numerical solutions are available in the general field of turbulent free‐surface incompressible flows (e.g. open‐channel flow and schematic dam break). They give satisfactory results, even though some progress should be made in the future in terms of free‐surface influence and wall conditions. Recommendations are given to SPH users to apply this method to the modelling of complex free‐surface turbulent flows. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Experimental data on the development of wakes in a straight duct, a curved duct, a curved diffuser and a straight diffuser are compared with computations based on a finite volume scheme incorporating the k– ε model of turbulence. The results show that the computations based on the standard k–ε model are able to satisfactorily capture only the mean velocity profiles. To improve the predictions, several modifications to the model are tried out. Close agreement between experiment and computation as regards the velocity profiles, wake parameters and profiles of the turbulent kinetic energy k and Reynolds shear stress ⌅{uv} is obtained when modification to the model constant Cμ, based on the curvature parameter and the ratio of the production of turbulent kinetic energy to its rate of dissipation, is incorporated. The modified model is also able to capture the asymmetry in the profiles of k and ⌅{uv} caused by the curvature and its enhancement due to the additional presence of an adverse pressure gradient.  相似文献   

7.
The use of finite element methods for turbulent boundary-layer flow is relatively recent and of limited extent.1 In the present study, we extend the group variable approach of Fletcher and Fleer2,3 to treat turbulent boundary layer flows with heat transfer using a two-equation turbulence model. The main concepts in the formulations include a Dorodnitsyn-type transformation which uses a velocity component as the transverse variable, a ‘variational’ formulation for the transformed equations using special test functions and development of a two-equation turbulence model in terms of the turbulent kinetic energy and turbulence dissipation rate as additional field variables. Several numerical test cases have been examined comparing the results with finite difference calculations and comparing the two-equation turbulence model with an algebraic turbulence model.  相似文献   

8.
Numerical computations are performed on the fully developed flow and heat transfer in a periodically ribbed channel with oscillatory throughflow. A uniform heat flux is imposed at the lower plate of the channel. An externally sustained pressure gradient varies sinusoidally in time. A low-turbulent-Reynolds-number version of the k–ϵ two-equation model of turbulence is invoked, together with a preferential dissipation modification, to predict the complex turbulent flow field. Computed results indicate that much heat transfer enhancement is expected by increasing the Womersley number, which measures the relative strength of the oscillatory motion to the viscous effects.  相似文献   

9.
The paper reports on a numerical study of turbulent confined jets in a conical duct with a 5° divergence. The flow has a large ratio of jet to ambient velocities at the entrance so that it gives rise to strong recirculation. The calculations are carried out with a general finite volume method designed for calculating incompressible elliptic flows with complex boundaries. Turbulence is simulated by the standard κ–? model. The sensitivity of the solution to numerical discretization errors is examined using three convection schemes, i.e. hybrid central/upwind differencing, QUICK and SOUCUP, on two grids consisting of 68 × 50 and 102 × 82 points respectively. An examination is also made of the influence of inlet boundary conditions on the predicted flow field. The computed results are compared with experimental data for mean axial velocity, turbulent shear stress and turbulent kinetic energy profiles. It is shown that the calculations reproduce the essential features of the flow observed in the experiments.  相似文献   

10.
A numerical study of the turbulent air flow in a trench trap and the turbulent flow around a permeable sand fence is reported in this paper. The two-dimensional modified k–ε turbulence model proposed by Kato and Launder is used to predict the turbulent characteristics of the air flow. The discretization method for the governing equations is the three-step Taylor/Galerkin finite element method proposed by the authors. For the flow in a trench trap the numerical results are compared with experimental data obtained under realistic conditions using a large wind tunnel. For the air flow around a permeable sand fence a pressure loss model is used to represent the effect of the porosity of the fence on the flow field. © 1997 John Wiley & Sons, Ltd.  相似文献   

11.
Systematic tests have been performed to study the behaviour of a numerical method developed to calculate 2D, steady free surface flows. The Reynolds equations are solved in the physical space by employing a non–orthogonal staggered grid, while the k-ε model is adopted to approximate the Reynolds stresses. The free surface is calculated following an iterative procedure and various parameters that affect convergence and accuracy of the numerical solution have been examined. Calculated results are compared with measured data for two cases, i.e. the wave generation above a bottom topography at various Froude numbers and the free surface formation above a submerged hydrofoil. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a finite difference technique for solving incompressible turbulent free surface fluid flow problems. The closure of the time‐averaged Navier–Stokes equations is achieved by using the two‐equation eddy‐viscosity model: the high‐Reynolds k–ε (standard) model, with a time scale proposed by Durbin; and a low‐Reynolds number form of the standard k–ε model, similar to that proposed by Yang and Shih. In order to achieve an accurate discretization of the non‐linear terms, a second/third‐order upwinding technique is adopted. The computational method is validated by applying it to the flat plate boundary layer problem and to impinging jet flows. The method is then applied to a turbulent planar jet flow beneath and parallel to a free surface. Computations show that the high‐Reynolds k–ε model yields favourable predictions both of the zero‐pressure‐gradient turbulent boundary layer on a flat plate and jet impingement flows. However, the results using the low‐Reynolds number form of the k–ε model are somewhat unsatisfactory. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
The study of axisymmetric flows is of interest not only from an academic point of view, due to the existence of exact solutions of Navier–Stokes equations, but also from an industrial point of view, since these kind of flows are frequently found in several applications. In the present work the development and implementation of a finite element algorithm to solve Navier–Stokes equations with axisymmetric geometry and boundary conditions is presented. Such algorithm allows the simulation of flows with tangential velocity, including free surface flows, for both laminar and turbulent conditions. Pseudo‐concentration technique is used to model the free surface (or the interface between two fluids) and the k–ε model is employed to take into account turbulent effects. The finite element model is validated by comparisons with analytical solutions of Navier–Stokes equations and experimental measurements. Two different industrial applications are presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Rhie–Chow interpolation is a commonly used method in CFD calculations on a co‐located mesh in order to suppress non‐physical pressure oscillations arising from chequerboard effects. A fully parallelized smoothed‐interface immersed boundary method on a co‐located grid is described in this paper. We discuss the necessity of modifications to the original Rhie–Chow interpolation in order to deal with a locally refined mesh. Numerical simulation with the modified scheme of Choi shows that numerical dissipation due to Rhie–Chow interpolation introduces significant errors at the immersed boundary. To address this issue, we develop an improved Rhie–Chow interpolation scheme that is shown to increase the accuracy in resolving the flow near the immersed boundary. We compare our improved scheme with the modified scheme of Choi by parallel simulations of benchmark flows: (i) flow past a stationary cylinder; (ii) flow past an oscillating cylinder; and (iii) flow past a stationary elliptical cylinder, where Reynolds numbers are tested in the range 10–200. Our improved scheme is significantly more accurate and compares favourably with a staggered grid algorithm. We also develop a scheme to compute the boundary force for the direct‐forcing immersed boundary method efficiently. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The suitability of Wilcox's 2006 kω turbulence model for scramjet flowfield simulations is demonstrated by validation against five test cases that have flowfields representative of those to be expected in scramjets. The five test cases include a 2D flat plate, an axisymmetric cylinder, a backward‐facing step, the mixing of a pair of coaxial jets and the interaction between a shock wave and turbulent boundary layer. A generally good agreement between the numerical and experimental results is obtained for all test cases. These tests reveal that despite the turbulence model's sensitivity to freestream turbulence properties, the numerically predicted skin friction agrees with experimental data and theoretical correlations to their degree of uncertainty. The tests also confirm the importance of using a y+ value of less than 1 in getting accurate surface heat transfer distributions. In the coaxial jets case, the importance of matching the turbulence intensities at the inflow plane in improving the predictions of the turbulent mixing phenomena is also shown. A review of guidelines with regard to the setting up of grids and specification of freestream turbulence properties for turbulent Reynolds‐averaged Navier–Stokes CFD simulations is also included in this paper. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Developing Couette–Poiseuille flows at Re=5000 are studied using a low Reynolds number k–ϵ two‐equation model and a finite element formulation. Mesh‐independent solutions are obtained using a standard Galerkin formulation and a Galerkin/least‐squares stabilized method. The predictions for the velocity and turbulent kinetic energy are compared with available experimental results and to the DNS data. Second moment closure's solutions are also compared with those of the k–ϵ model. The deficiency of eddy viscosity models to predict dissymmetric low Reynolds number channel flows has been demonstrated. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
An effective numerical technique is presented to model turbulent motion of a standing surface wave in a tank. The equations of motion for turbulent boundary layers at the solid surfaces are coupled with the potential flow in the bulk of the fluid, and a mixed BEM–finite difference technique is used to model the wave motion and the corresponding boundary layer flow. A mixing‐length theory is used for turbulence modelling. The model results are in good agreement with previous physical and numerical experiments. Although the technique is presented for a standing surface wave, it can be easily applied to other free surface problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper a truly incompressible version of the smoothed particle hydrodynamics (SPH) method is presented to investigate the surface wave overtopping. SPH is a pure Lagrangian approach which can handle large deformations of the free surface with high accuracy. The governing equations are solved based on the SPH particle interaction models and the incompressible algorithm of pressure projection is implemented by enforcing the constant particle density. The two‐equation kε model is an effective way of dealing with the turbulence and vortices during wave breaking and overtopping and it is coupled with the incompressible SPH numerical scheme. The SPH model is employed to reproduce the experiment and computations of wave overtopping of a sloping sea wall. The computations are validated against the experimental and numerical data found in the literatures and good agreement is observed. Besides, the convergence behaviour of the numerical scheme and the effects of particle spacing refinement and turbulence modelling on the simulation results are also investigated in further detail. The sensitivity of the computed wave breaking and overtopping on these issues is discussed and clarified. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
High-Velocity Laminar and Turbulent Flow in Porous Media   总被引:1,自引:0,他引:1  
We model high-velocity flow in porous media with the multiple scale homogenization technique and basic fluid mechanics. Momentum and mechanical energy theorems are derived. In idealized porous media inviscid irrotational flow in the pores and wall boundary layers give a pressure loss with a power of 3/2 in average velocity. This model has support from flow in simple model media. In complex media the flow separates from the solid surface. Pressure loss effects of flow separation, wall and free shear layers, pressure drag, flow tube velocity and developing flow are discussed by using phenomenological arguments. We propose that the square pressure loss in the laminar Forchheimer equation is caused by development of strong localized dissipation zones around flow separation, that is, in the viscous boundary layer in triple decks. For turbulent flow, the resulting pressure loss due to average dissipation is a power 2 term in velocity.  相似文献   

20.
A finite volume turbulence model for the resolution of the two‐dimensional shallow water equations with turbulent term is presented. After making a finite volume discretization of the depth‐averaged k–ε equations in conservative form, the qr equations, that give stability to the process, are obtained. Wall and inlet boundary conditions for the turbulent equations and wall conditions for the hydrodynamic equations are discussed. A comparison between the k–ε and qr models and some experimental results is made. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号