首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 469 毫秒
1.
A sensitive electrochemical method for the detection of DNA hybridization based on the probe labeled with multiwall carbon‐nanotubes (MWNTs) loaded with silver nanoparticles (Ag‐MWNTs) has been developed. MWNTs were electroless‐plated with a large number of silver nanoparticles to form Ag‐MWNTs. Probe single strand DNA (ss‐DNA) with a thiol group at the 3′‐terminal labeled with Ag‐MWNTs by self‐assembled monolayer (SAM) technique was employed as an electrochemical probe. Target ss‐DNA with a thiol group was immobilized on a gold electrode by SAM technique and then hybridized with the electrochemical probe. Binding events were monitored by differential pulse voltammetric (DPV) signal of silver nanoparticles. The signal difference permitted to distinguish the match of two perfectly complementary DNA strands from the near perfect match where just three base pairs were mismatched. There was a linear relation between the peak current at +120 mV (vs. SCE) and complementary target ss‐DNA concentration over the range from 3.1×10?14 to 1.0×10?11 mol/L with a detection limit of 10 fmol/L of complementary target ss‐DNA. The proposed method has been successfully applied to detection of the DNA sequence related to cystic fibrosis. This work demonstrated that the MWNTs loaded with silver nanoparticles offers a great promising approach for sensitive detection of DNA hybridization.  相似文献   

2.
Carbon screen-printed electrodes (CSPE) modified with silver nanoparticles present an interesting alternative in the determination of antimony using differential pulse anodic stripping voltammetry.Metallic silver nanoparticle deposits have been obtained by direct electrochemical deposition. Scanning electron microscopy measurements show that the electrochemically synthesized silver nanoparticles are deposited in aggregated form. Any undue effects caused by the presence of foreign ions in the solution were also analyzed to ensure that common interferents in the determination of antimony by ASV, such as bismuth, do not influence the electrochemical response of the latter element. The detection limit for Sb(III) obtained was 6.79 × 10−10 M. In terms of reproducibility, the precision of the above mentioned method in %RSD values was calculated at 3.50%. The method was applied to determine levels of antimony in seawater samples and pharmaceutical preparations.  相似文献   

3.
The electrochemical determination of silver‐modified titanium phosphate nanoparticles (Ag‐TiPNPs) was performed using two electrochemical features of this novel kind of nanoparticles. First, a determination using the voltammetric activity of the silver from the Ag‐TiPNPs was carried out. Secondly, the electrocatalytic effect of Ag‐TiPNPs was shown for the first time to the hydrogen evolution reaction (HER) and the determination of these nanoparticles was performed by chronoamperometry using this electrocatalysis. Moreover, it was verified that the catalytic effect was due to the electroreduced silver since the unmodified titanium phosphate nanoparticles (TiPNPs) did not exhibit this effect. Detection limits as low as 0.1 and 0.75 ng µL?1 of Ag‐TiPNPs were obtained with the voltammetric and chronoamperometric methods, respectively. 8‐channel screen‐printed electrochemical arrays (8xSPCEs) were employed as transducers to carry out these electrochemical studies, due to its low cost and time saving.  相似文献   

4.
A novel label‐free electrochemical method for protein detection based on redox properties of silver was developed. As recognition elements, thrombin‐binding aptamers were used. Screen printed electrodes modified with silver nanoparticles (AgNP) were employed as a sensing platform for aptasensor devices. The oxidation of silver upon polarization served as a basis for analytical response. Three different thrombin binding aptamers with various surface concentrations were studied. Linear range of aptasensor response corresponded to the 10−9 M to 10−7 M thrombin concentration range and the detection limit was 10−9 M.  相似文献   

5.
《Electroanalysis》2004,16(23):1925-1930
A simple and practical method for electrochemical DNA hybridization assay has been developed to take advantage of magnetic nanoparticles for ssDNA immobilization and zinc sulfide nanoparticle as oligonucleotide label. Magnetic nanoparticles were prepared by coprecipitation of Fe2+ and Fe3+ with NH4OH, and then amino silane was coated onto the surface of magnetite nanoparticles. The magnetic nanoparticles have the advantages of easy preparation, easy surface modification and low cost. The target ssDNA with the phosphate group at the 5′ end was then covalently immobilized to the amino group of magnetite nanoparticles by forming a phosphoramidate bond in the presence of 1‐ethyl‐3‐(3‐dimeth‐ylaminopropyl)carbodiimide (EDAC). The zinc sulfide (ZnS) nanoparticle‐labeled oligonucleotides probe was used to identify the target ssDNA immobilized on the magnetic nanoparticles based on a specific hybridization reaction. The hybridization events were assessed by the dissolution of the zinc sulfide nanoparticles anchored on the hybrids and the indirect determination of the dissolved zinc ions by anodic stripping voltammetry (ASV) at a mercury film glassy carbon electrode (GCE). The proposed method couples the high sensitivity of anodic stripping analysis for zinc ions with effective magnetic separation for eliminating nonspecific adsorption effects and offers great promise for DNA hybridization analysis.  相似文献   

6.
The study of a new type of working electrode - the renovated silver ring electrode (RSRE) - for lead ions detection via differential pulse anodic stripping voltammetry (DP ASV) without removal of oxygen is reported. The only four constituents of the RSRE: a specially constructed silver ring electrode, a silver sheet used as silver counter/quasi-reference electrode and a silicon O-ring, are fastened together in a polypropylene body. The renovation of this electrode is carried out through mechanical removal of solid contaminants and electrochemical activation in the electrolyte which fills the RSRE body. Excellent repeatability and reproducibility - also in organic samples solutions - were reached in a period of a few weeks through the renovation of the electrode surface before each measurement. The reduction and stripping of lead on silver electrode under the DP ASV conditions are underpotential deposition/dissolution phenomena. The RSRE is used for the determination of Pb ions in concentrations ranging from 1 × 10−9 to 1 × 10−7 M. The repeatability of DP ASV runs in synthetic solutions covering the entire concentration range is better than 2%. Obtained calibration curves are represented by a correlation coefficient of at least 0.999. The detection limit (LOD) for the time of electrodeposition equal to 60 s is 0.2 × 10−9 M. LOD for Pb2+ detection at the RSRE is similar to this reported for a rotating silver electrode in subtractive anodic stripping voltammetry (E. Kirowa-Eisner, et al., Anal. Chim. Acta, 385 (1999) 325). The analysis of Pb2+ in synthetic solutions with and without surfactants, certified reference materials and natural water samples have been performed.  相似文献   

7.
《Electroanalysis》2017,29(11):2498-2506
The effect of silver nanoparticles on human health has been investigated and the controversial opinions about their use in a wide variety of commercial products were expressed. Their interactions with vitamins and salts constitute an important step to elucidate the possible improper transformations knowing that the silver nanoparticles could have the effect on cell viability. In this circumstance, in our study we investigated the electrochemical behavior of ascorbic acid, in NaCl blank solution and NaCl solution containing the silver nanoparticles using the cyclic voltammetry and current constant electrolysis associated to UV‐Vis spectrophotommetry. The presence of silver nanoparticles (nAg) leads to a more rapid electrodegradation of vitamin C (VitC) in solution of NaCl, the zero‐order reaction kinetics being followed. The rate constant value of 0.78 u.A. min−1 was obtained compared to the value of 0.39 u.A. min−1 that was computed in the absence of nAg. The Vitamin C degradation mechanism was also proposed.  相似文献   

8.
《Electroanalysis》2017,29(4):1014-1021
An electrochemical device was developed for the simultaneous determination of sulfamethoxazole (SMX) and trimethoprim (TMP) using differential pulse voltammetry and glassy carbon (GC) electrodes modified with reduced graphene oxide (rGO) and silver nanoparticle (AgNP) composites, synthesised using both chemical and electrochemical methods. The morphology and electrochemical behaviour of the GC electrodes modified with the rGO/AgNP (chemical method) and rGO‐AgNP (electrochemical method) composites were characterised by scanning electron microscopy and cyclic voltammetry. These techniques demonstrated that, in both methods, the graphene oxide was modified by the AgNPs, and the composite synthesised by the electrochemical method showed a better dispersion of the nanoparticles, resulting in an increase in the surface area compared to the rGO/AgNP composite. The GC/rGO‐AgNP electrode was evaluated and optimised for the simultaneous determination of SMX and TMP, achieving detection limits of 0.6 μmol L−1 for the SMX and 0.4 μmol L−1 for the TMP. The proposed GC/rGO‐AgNP electrochemical device was successfully applied to the simultaneous determination of SMX and TMP in wastewaters samples.  相似文献   

9.
In the present work, a signal‐on electrochemical sensing strategy for the simultaneous detection of adenosine and thrombin is developed based on switching structures of aptamers. An Au electrode as the sensing surface is modified with two kinds of thiolated capture probes complementary to the linker DNA that contains either an adenosine aptamer or thrombin aptamer. The capture probes hybridize with their corresponding linker DNA, which has prehybridized with the reporter DNA loaded onto the gold nanoparticles (AuNPs). The AuNP contained two kinds of bio‐barcode DNA: one is complementary to the linker DNA (reporter), whereas the other is not (signal) and is tagged with different metal sulfide nanoparticles. Thus a “sandwich‐type” sensing interface is fabricated for adenosine and thrombin. With the introduction of adenosine and thrombin, the aptamer parts bind with their targets and fold to form the complex structures. As a result, the bio‐barcoded AuNPs are released into solution. The metal sulfide nanoparticles are measured by anodic stripping voltammetry (ASV), and the concentrations of adenosine and thrombin are proportional to the signal of either metal ion. With the dual amplification of the bio‐barcoded AuNP and the preconcentration of metal ions through ASV technology, detection limits as low as 6.6×10?12 M for adenosine and 1.0×10?12 M for thrombin are achieved. The sensor exhibits excellent selectivity and detectability in biological samples.  相似文献   

10.
This paper presents a new approach to detect dopamine in nanomolar range using an electrochemical sensor utilizing a composite made of chitosan‐stabilized silver nanoparticles and p‐toluene sulfonic acid‐doped ultrathin polypyrrole film. Studies included cyclic voltammogram, amperometry, differential pulse voltammetry and also investigation by electrochemical impedance spectroscopy. A detection limit of 0.58 nM was achieved in the linear range 1×10?9 M to 1.2×10?7 M. High sensitivity towards DA, good reproducibility and long‐term stability have been demonstrated without interference from ascorbic acid, uric acid, epinephrine, L ‐dopa, glucose. The sensing system was successfully applied for quantitative determination of dopamine in commercially available human blood serum.  相似文献   

11.
以AgNO3为金属源,通过乙醇将与聚N-异丙基丙烯酰胺接枝聚丙烯腈/聚苯乙烯(PNIPAAm-g-PAN/PSt)聚合物微球表面酰胺基团配位的银离子(Ag+)还原,一步法制备了PNIPAAm-g-PAN/PSt载银复合微球。通过傅立叶变换红外(FTIR)和紫外-可见光光谱表征发现,由Ag+还原所得的Ag纳米颗粒被成功地固载在PNIPAAm-g-PAN/PSt 微球上;用透射电子显微镜(TEM)对载银微球的大小和形态进行了表征;热重分析(TGA)结果表明,固载在微球表面的银纳米颗粒的含量(质量分数)为12%;抗菌实验结果表明,所制备的载银微球具有抗革兰氏阴性菌的活性。  相似文献   

12.
Glucose concentration monitoring is important for the prevention, diagnosis and treatment of diabetes. In this work, a composite material of AgNPs/MOF‐74(Ni) was prepared for electrochemical determination of glucose. AgNPs/MOF‐74(Ni) was characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X‐ray photoelectron spectroscopy (XPS). The electrochemical properties of the glassy carbon electrodes modified with the AgNPs/MOF‐74(Ni) composites were characterized by cyclic voltammetry (CV) and current‐time curve (I‐t curve) with three electrode system. The determination of glucose with the electrode modified by AgNPs/MOF‐74(Ni) has a linear range of 0.01~4 mM with the correlation coefficient (R2) of 0.994. The detection limit is 4.7 μM (S/N=3) and the sensitivity is 1.29 mA ? mM?1 ? cm?2. In addition, this sensing system possesses reasonable reproducibility and stability. The good performance of electrochemical determination for glucose is attributed to the concerted effect of silver nanoparticles and MOF‐74(Ni) on the promotion of glucose oxidation  相似文献   

13.
An electrochemical biosensor was developed for the determination of Escherichia coli (E. coli) in water. For this purpose, silver‐gold core‐shell (Ag@Au) bioconjugates and anti‐E. coli modified PS‐microwells were designed in a sandwich‐type format in order to obtain higher sensitivity and selectivity. Ag@Au bimetallic nanoparticles were synthesized by co‐reduction method. The core‐shell formation was analyzed by using UV‐Vis spectroscopy and transmission electron microscopy. Biotin labeled anti‐E. coli antibodies were coupled with Ag@Au nanoparticles to form bioconjugates. The electrochemical immunosensor was prepared by immobilizing anti‐E. coli on polystyrene (PS)‐microwells via chemical bonding. These modified microwells were identified with X‐ray photoelectron spectroscopy and surface enhanced Raman spectroscopy. E. coli was sandwiched between Ag@Au bioconjugates and anti‐E. coli on PS‐microwells at different concentrations. The relationship between the E. coli concentration and stripping current of gold ions (Au3+) were investigated by square wave anodic stripping voltammetry at pencil graphite electrode. The proposed method can provide some advantages such as lower detection limit and shorter detection time. The electrochemical response for the immunosensor was linear with the concentration of the E. coli in the range of 101 and 105 cfu/mL with a limit of detection 3 cfu/mL. The procedure maintains good sensitivity and repeatability and also offers utility in the fields of environmental monitoring and clinical diagnosis.  相似文献   

14.
Column electrodes pretreated through oxidation–reduction cycles were traditionally used in electrochemical surface‐enhanced Raman scattering (SERS). In this study, a disposable screen‐printed carbon electrode was introduced into in situ electrochemical SERS through the electrodeposition of dendritic gold/silver nanoparticles (Au/AgNPs) onto the surface of the carbon working electrode to induce the SERS enhancement effect on the electrode. Scanning electron microscopy images showed that dendritic Au/AgNPs nanostructures could be fabricated under appropriate electrodeposition conditions and could present a minimum SERS factor of 4.25 × 105. Furthermore, the absorbed behavior of 4‐mercaptopyridine was investigated under different potentials. The adsorption configuration was inferred to transform from ‘vertical’ to ‘lying‐flat’. The proposed new electrode combined with a portable Raman spectrometer could be useful in the identifying products or intermediates during electrochemical synthesis or electrochemical catalysis in in situ electrochemical SERS. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Silver‐based nanocomposites are known to act as biocides against a series of microorganisms and are largely studied as an alternative to substitute conventional antibiotics that show decreasing efficacy. In this work, an eco‐friendly method to synthesize silver nanoparticles assembled on the surface of hexaniobate crystals is reported. By means of ion exchange, K+ ions of layered potassium hexaniobate were partially substituted by Ag+ ions and the resulting material was exposed to UV light. The irradiation allowed the reduction of silver ions with consequent formation of silver nanoparticles located only on the hexaniobate surface, whereas Ag+ ions located in the interlayer space remained in the ionic form. Increasing UV‐light exposure times allowed controlling of the silver nanoparticle size. The antibacterial effects of the pristine potassium hexaniobate and of silver‐containing hexaniobate samples were tested against Escherichia coli (E. coli). The antibacterial efficacy was determined to be related to the presence of silver in hexaniobate. An increasing activity against E. coli was observed with the decrease in silver nanoparticles size, suggesting that silver nanoparticles of distinct sizes interact differently with bacterial cell walls.  相似文献   

16.
A novel sensitive electrochemical immunoassay with colloidal gold as the antibody labeling tag and subse-quent signal amplification by silver enhancement is described. Colloidal gold was treated by a light-sensitive silver enhancement system which made silver deposit on the surface of colloidal gold(form Au/Ag core-shell structure), followed by the release of the metallic silver atoms anchored on the antibody by oxidative dissolu-tion of them in an acidic solution and the indirect determination of the dissolved Ag ions by anodic stripping voltamrnetry(ASV) at a carbon fiber microelectrode. The electrochemical signal is directly proportional to the amount of analyte(goat IgG) in the standard or a sample, The method was evaluated by means of a non-competitive heterogeneous immunoassay of immunoglobulin G(IgG) with a concentration as low as 0. 2 ng/mL. The high performance of the method is related to the sensitive ASV determination of silver( I ) at a car-bon fiber microelectrode and to the release of a large number of Ag^ ions from each silver shell anchored on the analyte (goat IgG).  相似文献   

17.
Noble metals can be ionized by electrochemical corrosion and transported by electrospray ionization. Mass spectrometry (MS) showed solvated metal ions as the main ionic constituent of the sprayed droplets. Collection of the electrospray plume on a surface yielded noble metal nanoparticles (NPs) under ambient conditions. The NPs were characterized by several techniques. Under typical conditions, capped‐nanoparticle sizes averaged 2.2 nm for gold and 6.5 nm for silver. The gold nanoparticles showed high catalytic activity in the reduction of p‐nitrophenol by NaBH4. Efficient catalysis was also observed by simply directing the spray of solvated Au+ onto the surface of an aqueous p‐nitrophenol/NaBH4 mixture. Organometallic ions were generated by spiking ligands into the spray solvent: for example, CuI bipyridine cations dominated the spray during Cu electrocorrosion in acetonitrile containing bipyridine. This organometallic reagent was shown to be effective in the radical polymerization of styrene.  相似文献   

18.
Silver nanoparticles were prepared by UV irradiation from silver salts, such as AgBF4 or AgNO3, when dissolved in an amphiphilic film of poly((oxyethylene)9 methacrylate)‐graft‐poly((dimethyl siloxane)n methacrylate), POEM‐g‐mPDMS. The in situ formation of silver nanoparticles in the graft copolymer film was confirmed by transmission electron microscopy (TEM), UV‐visible spectroscopy, and wide angle X‐ray scattering (WAXS). The results demonstrated that the use of AgBF4 yielded silver nanoparticles with a smaller size (~5 nm) and narrower particle distribution when compared with AgNO3. The formation of silver nanoparticles was explained in terms of the interaction strength of the silver ions with the ether oxygens of POEM, as revealed by differential scanning calorimetry (DSC) and X‐ray photoelectron spectroscopy (XPS). It was thus concluded that a stronger interaction of silver ions with the ether oxygens results in a more stable formation of silver nanoparticles, which produces uniform and small‐sized nanoparticles. DSC and small angle X‐ray scattering (SAXS) data also showed the selective incorporation and in situ reduction of the silver ions within the hydrophilic POEM domains. Excellent mechanical properties of the nanocomposite films (3–5 × 105 dyn/cm2) were observed, mostly because of the confinement of silver nanoparticles in the POEM chains as well as interfaces created by the microphase separation of the graft copolymer film. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1283–1290, 2007  相似文献   

19.
We report herein a method for the ultra‐trace detection of TNT on p‐aminothiophenol‐functionalized silver nanoparticles coated on silver molybdate nanowires based on surface‐enhanced Raman scattering (SERS). The method relies on π‐donor–acceptor interactions between the π‐acceptor TNT and the π‐donor p,p′‐dimercaptoazobenzene (DMAB), with the latter serving to cross‐link the silver nanoparticles deposited on the silver molybdate nanowires. This system presents optimal imprint molecule contours, with the DMAB forming imprint molecule sites that constitute SERS “hot spots”. Anchoring of the TNT analyte at these sites leads to a pronounced intensification of its Raman emission. We demonstrate that TNT concentrations as low as 10?12 M can be accurately detected using the described SERS assay. Most impressively, acting as a new type of SERS substrate, the silver/silver molybdate nanowires complex can yield new silver nanoparticles during the detection process, which makes the Raman signals very stable. A detailed mechanism for the observed SERS intensity change is discussed. Our experiments show that TNT can be detected quickly and accurately with ultra‐high sensitivity, selectivity, reusability, and stability. The results reported herein may not only lead to many applications in SERS techniques, but might also form the basis of a new concept for a molecular imprinting strategy.  相似文献   

20.
《Chemphyschem》2004,5(1):68-75
Spherical silver and gold nanoparticles with narrow size distributions were conveniently synthesized in aqueous solution by a novel electrochemical method. The technological keys to the electrochemical synthesis of monodispersed metallic nanoparticles lie in the choice of an ideal stabilizer for the metallic nanoclusters and the use of a rotating platinum cathode. Poly(N‐vinylpyrrolidone) (PVP) was chosen as the stabilizer for the silver and gold clusters. PVP not only protects metallic particles from agglomeration, but also promotes metal nucleation, which tends to produce small metal particles. Using a rotating platinum cathode effectively solves the technological difficulty of rapidly transferring the (electrochemically synthesized) metallic nanoparticles from the cathode vicinity to the bulk solution, avoiding the occurrence of flocculates in the vicinity of the cathode, and ensuring the monodispersity of the particles. The particle size and particle size distribution of the silver and gold nanoparticles were improved by adding sodium dodecyl benzene sulfonate (SDBS) to the electrolyte. The electrochemically synthesized nanoparticles were characterized by TEM and UV/Vis spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号