首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A novel implicit immersed boundary method of high accuracy and efficiency is presented for the simulation of incompressible viscous flow over complex stationary or moving solid boundaries. A boundary force is often introduced in many immersed boundary methods to mimic the presence of solid boundary, such that the overall simulation can be performed on a simple Cartesian grid. The current method inherits this idea and considers the boundary force as a Lagrange multiplier to enforce the no‐slip constraint at the solid boundary, instead of applying constitutional relations for rigid bodies. Hence excessive constraint on the time step is circumvented, and the time step only depends on the discretization of fluid Navier‐Stokes equations, like the CFL condition in present work. To determine the boundary force, an additional moving force equation is derived. The dimension of this derived system is proportional to the number of Lagrangian points describing the solid boundaries, which makes the method very suitable for moving boundary problems since the time for matrix update and system solving is not significant. The force coefficient matrix is made symmetric and positive definite so that the conjugate gradient method can solve the system quickly. The proposed immersed boundary method is incorporated into the fluid solver with a second‐order accurate projection method as a plug‐in. The overall scheme is handled under an efficient fractional step framework, namely, prediction, forcing, and projection. Various simulations are performed to validate current method, and the results compare well with previous experimental and numerical studies.  相似文献   

2.
A new method for the simulation of the translational and rotational motions of a system containing a sedimenting particle interacting with a neutrally buoyant particle has been developed. The method is based on coupling the quasi-static Stokes equations for the fluid with the rigid body equations of motion for the particles. The Stokes equations are solved at each time step with the boundary element method. The stresses are then integrated over the surface of each particle to determine the resultant forces and moments. These forces and moments are inserted into the rigid body equations of motion to determine the translational and rotational motions of the particles. Unlike many other simulation techniques, no restrictions are placed on the shape of the particles. Superparametric boundary elements are employed to achieve accurate geometric representations of the particles. The simulation method is able to predict the local fluid velocity, resolve the forces and moments exerted on the particles, and track the particle trajectories and orientations.  相似文献   

3.
The distributed Lagrange multiplier/fictitious domain method proposed for the direct numerical simulation of particle‐laden flows is considered in this work. First, it is demonstrated that improved accuracy is obtained with a coupled numerical scheme, whereby the pressure and the Lagrange multiplier fields enforcing incompressibility and rigid body motion, respectively, are calculated and applied together. However, the convergence characteristics of the iterative solution of the coupled scheme are poor because symmetric but indefinite and poorly conditioned matrices are produced. An analysis is then presented, which suggests that the cause for the matrix pathologies lies in the interaction of the respective matrix operators enforcing incompressibility and rigid body motion. On the basis of this analysis, an alternative formulation is developed for the Lagrange multipliers, being now composed of a set of forces distributed only on the particle boundary together with a set of couples distributed within the particle core. The new formulation is tested with several types of flows with stationary or moving particles under creeping or finite Reynolds number conditions and it is demonstrated that it produces correct results and better conditioned matrices, thus enabling faster and more reliable convergence of the conjugate gradient method. The analysis and tests, therefore, support the expectation that the proposed formulation is promising and worthy of further study and improvement. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, the steady rotational motion of a slip sphere in a semi-infinite micropolar fluid is investigated. The sphere is assumed to rotate about a diameter perpendicular to an impermeable plane wall. The slip and spin boundary conditions are imposed on the spherical particle surface while on the plane wall surface the classical no-slip and no-spin conditions are utilized. A semi-analytical technique based on the principle of superposition together with a numerical method, called the collocation method, is employed to obtain the hydrodynamic torque acting on the spherical particle. Numerical results for the torque are obtained and illustrated graphically.  相似文献   

5.
通过吸收有限元与无网格法的优点,提出了一种新的数值方法------自由单元法.此方法在离散方面,采用有限元法中的等参单元,表征几何形状和进行物理量的插值;在算法方面,采用单元配点技术,逐点产生系统方程.主要特点是,在每个配置点只需要一个和周围自由选择的节点而形成的一个独立的等参单元,因而不需要考虑物理量在单元之间的相互连接关系与导数连续性问题. 本文介绍强形式与弱形式两种自由单元法,前者直接由控制方程和边界条件直接产生系统方程,后者通过在自由单元上建立控制方程的加权余量式产生弱形式积分式,并通过像传统有限元法中的积分过程建立系统方程组.本文提出的方法是一种单元配点法,对于域内点为了获得较高的导数精度,需要采用至少具有一个内部点的等参单元,为此除了可使用各阶次的拉格朗日四边形单元外, 还 给出了七节点三角形等参单元,用于模拟较为复杂的几何形状问题.   相似文献   

6.
The numerical simulation of interaction between structures and two‐phase flows is a major concern for many industrial applications. To address this challenge, the motion of structures has to be tracked accurately. In this work, a discrete forcing method based on a porous medium approach is proposed to follow a nondeformable rigid body with an imposed velocity by using a finite‐volume Navier‐Stokes solver code dedicated to multiphase flows and based on a two‐fluid approach. To deal with the action reaction principle at the solid wall interfaces in a conservative way, a porosity is introduced allowing to locate the solid and insuring no diffusion of the fluid‐structure interface. The volumetric fraction equilibrium is adapted to this novelty. Mass and momentum balance equations are formulated on a fixed Cartesian grid. Interface tracking is addressed in detail going from the definition of the porosity to the changes in the discretization of the momentum balance equation. This so‐called time‐ and space‐dependent porosity method is then validated by using analytical and elementary test cases.  相似文献   

7.
This paper presents a computational model for free surface flows interacting with moving rigid bodies. The model is based on the SPH method, which is a popular meshfree, Lagrangian particle method and can naturally treat large flow deformation and moving features without any interface/surface capture or tracking algorithm. Fluid particles are used to model the free surface flows which are governed by Navier–Stokes equations, and solid particles are used to model the dynamic movement (translation and rotation) of moving rigid objects. The interaction of the neighboring fluid and solid particles renders the fluid–solid interaction and the non‐slip solid boundary conditions. The SPH method is improved with corrections on the SPH kernel and kernel gradients, enhancement of solid boundary condition, and implementation of Reynolds‐averaged Navier–Stokes turbulence model. Three numerical examples including the water exit of a cylinder, the sinking of a submerged cylinder and the complicated motion of an elliptical cylinder near free surface are provided. The obtained numerical results show good agreement with results from other sources and clearly demonstrate the effectiveness of the presented meshfree particle model in modeling free surface flows with moving objects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Two different techniques to analyze non‐Newtonian viscous flow in complex geometries with internal moving parts and narrow gaps are compared. The first technique is a non‐conforming mesh refinement approach based on the fictitious domain method (FDM), and the second one is the extended finite element method (XFEM). The refinement technique uses one fixed reference mesh, and to impose continuity across non‐conforming regions, constraints using Lagrangian multipliers are used. The size of elements locally in the high shear rate regions is reduced to increase accuracy. FDM is shown to have limitations; therefore, XFEM is applied to decouple the fluid from the internal moving rigid bodies. In XFEM, the discontinuous field variables are captured by using virtual degrees of freedom that serve as enrichment and by applying special integration over the intersected elements. The accuracy of the two methods is demonstrated by direct comparison with results of a boundary‐fitted mesh applied to a two‐dimensional cross section of a twin‐screw extruder. Compared with non‐conforming FDM, XFEM shows a considerable improvement in accuracy around the rigid body, especially in the narrow gap regions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
We perform direct numerical simulation of three‐dimensional turbulent flows in a rectangular channel, with a lattice Boltzmann method, efficiently implemented on heavily parallel general purpose graphical processor units. After validating the method for a single fluid, for standard boundary layer problems, we study changes in mean and turbulent properties of particle‐laden flows, as a function of particle size and concentration. The problem of physical interest for this application is the effect of water droplets on the turbulent properties of a high‐speed air flow, near a solid surface. To do so, we use a Lagrangian tracking approach for a large number of rigid spherical point particles, whose motion is forced by drag forces caused by the fluid flow; particle effects on the latter are in turn represented by distributed volume forces in the lattice Boltzmann method. Results suggest that, while mean flow properties are only slightly affected, unless a very large concentration of particles is used, the turbulent vortices present near the boundary are significantly damped and broken down by the turbulent motion of the heavy particles, and both turbulent Reynolds stresses and the production of turbulent kinetic energy are decreased because of the particle effects. We also find that the streamwise component of turbulent velocity fluctuations is increased, while the spanwise and wall‐normal components are decreased, as compared with the single fluid channel case. Additionally, the streamwise velocity of the carrier (air) phase is slightly reduced in the logarithmic boundary layer near the solid walls. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
孟智娟  迟晓菲 《力学季刊》2022,43(2):355-365
本文以求解三维波动方程为例,介绍了改进的插值型维数分裂无单元Galerkin方法,推导了方程的弱形式,构造了具有插值特性的逼近函数,建立了可直接施加本质边界条件的离散方程组,研究不同本质边界条件施加方法对计算结果的影响.本文列举了三种常用的处理本质边界条件的方法:直接配点法、对角元素置大数法和对角元素化一法.选取了三个数值算例,分别采用不同的本质边界条件施加方法,分析计算结果,证明了三种施加方法的有效性,讨论了每种施加方法的优缺点,并针对问题需求选出合适的施加本质边界条件的方法.与改进的无单元Galerkin方法相比,改进的插值型维数分裂无单元Galerkin方法具有更高的计算精度和更快的计算速度.  相似文献   

11.
The fundamental solution for the axi-symmetrictranslational motion of a microstretch fluid due to a concentrated point body force is obtained.A general formula for thedrag force exerted by the fluid on an axi-symmetric rigid particle translating in it is then deduced.As an application to theobtained drag formula,this paper has discussed the problemof creeping translational motion of a rigid sphere in a microstretch fluid.The slip boundary condition on the surfaceof the spherical particle is applied.The drag force and theother physical quantities are obtained and represented graphically for various values of the micropolarity and slip parameters.  相似文献   

12.
In this paper, we present an immersed boundary method for solving fluid flow problems in the presence of static and moving rigid objects. A FEM is used starting from a base mesh that does not represent exactly rigid objects (non?body?conforming mesh). At each time step, the base mesh is locally modified to provide a new mesh fitting the boundary of the rigid objects. The mesh is also locally improved using edge swapping to enhance the quality of the elements. The Navier–Stokes equations are then solved on this new mesh. The velocity of moving objects is imposed through standard Dirichlet boundary conditions. We consider a number of test problems and compare the numerical solutions with those obtained on classical body?fitted meshes whenever possible. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
In order to understand the hydrodynamic interactions that can appear in a fluid particle motion, an original method based on the equations governing the motion of two immiscible fluids has been developed. These momentum equations are solved for both the fluid and solid phases. The solid phase is assumed to be a fluid phase with physical properties, such as its behaviour can be assimilated to that of pseudo‐rigid particles. The only unknowns are the velocity and the pressure defined in both phases. The unsteady two‐dimensional momentum equations are solved by using a staggered finite volume formulation and a projection method. The transport of each particle is solved by using a second‐order explicit scheme. The physical model and the numerical method are presented, and the method is validated through experimental measurements and numerical results concerning the flow around a circular cylinder. Good agreement is observed in most cases. The method is then applied to study the trajectory of one settling particle initially off‐centred between two parallel walls and the corresponding wake effects. Different particle trajectories related to particulate Reynolds numbers are presented and commented. A two‐body interaction problem is investigated too. This method allows the simulation of the transport of particles in a dilute suspension in reasonable time. One of the important features of this method is the computational cost that scales linearly with the number of particles. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
As attractive alternatives to a set of three Euler angles, the rotation of a rigidly deforming body is often represented using four or more parameters. The accompanying parameter constraints introduce generalized constraint forces in the equations of motion which can often negate the benefits of a particular parameterization. In this paper, we discuss situations where the parameter constraints are not imposed. Thus, although the body no longer deforms rigidly, it does deform homogeneously. This allows the theory of a Cosserat point (or, equivalently, the theory of a pseudo-rigid body) to be used to establish equations governing its motion. Earlier work on this topic by O’Reilly and Varadi considered the four Euler parameters and the single Euler parameter constraint. Here, we consider Poincaré's six parameter representation of a rotation tensor, and, complementing earlier work, discuss numerical implementation and representative simulations. One of the contributions of this paper is the development of a viscoelastic Cosserat point, whose equations of motion are free from parameter constraints and singularities, that can be used to approximate the motion of a rigid body.  相似文献   

15.
A boundary element method is presented for the coupled motion analysis of structural vibration with small-amplitude fluid sloshing in two-dimensional space. The linearized Navier-Stokes equations are considered in frequency domain and transformed into boundary integral equations. An appropriate fundamental solution for the Helmholtz equation with pure imaginary constant is found. The condition of zero-stress is imposed on the free surface, and non-slip condition of fluid particles is imposed on the walls of the container. For rigid motion models, the expressions for added mass and added damping to the structural motion equations are obtained. Some typical numerical examples are presented.  相似文献   

16.
The growth and collapse of gaseous bubbles near a movable or deformable body are investigated numerically using the boundary element method and fluid–solid coupling technique. The fluid is treated as inviscid, incompressible and the flow irrotational. The unsteady Bernoulli equation is applied on the bubble surface as one of the boundary conditions of the Laplace’s equation for the potential. Good agreements between the numerical and experimental results demonstrate the robustness and accuracy of the present method. The translation and rotation of the rigid body due to the bubble evolution are captured by solving the six-degrees-of-freedom equations of motion for the rigid body. The fluid–solid coupling is achieved by matching the normal component of the velocity and the pressure at the fluid–solid interface. Compared to a fixed rigid body, the expansion of the bubble is not affected too much but much faster collapsing velocities during the collapsing phase of bubble can be observed when considering the motion of the rigid body. The rigid body is pushed away as the bubble grows and moved toward the bubble as the bubble collapses. The motion of two bubbles near a movable cylinder is also simulated. The large rotation of the cylinder and obvious deformation and distortion for the bubble in close proximity to a curved wall are observed in our codes. Finally, the growth and collapse of bubble near a deformable ellipsoid shell are also simulated using the combination of boundary element method (BEM) and finite element method (FEM) techniques. The oscillations of the ellipsoid shell can be observed during the growth and collapse of bubble, which much differs from the results obtained by only considering effects of a rigidly movable body on the bubble evolution.  相似文献   

17.
In this paper we study the motion of a self-propelled rigid body through a Navier-Stokes fluid that fills all the three-dimensional space exterior to it. We formulate the problem and prove the existence of a weak solution that is defined globally in time, provided that the net flux across the boundary, of the prescribed boundary values for the velocity, is zero. It is these prescribed boundary values that propel the body, and the body is free to rotate during its motion. In the special case of a body which is symmetric about an axis, and propelled by symmetric boundary values, we obtain strong solutions representing translational motions in the direction of the axis. Further, we prove that for small Reynolds numbers every steady solution with such axial symmetry is attainable as the limit, as time tends to infinity, of a strong nonsteady solution which starts from rest.  相似文献   

18.
The effect of the control structure interaction on the feedforward control law as well as the dynamics of flexible mechanical systems is examined in this investigation. An inverse dynamics procedure is developed for the analysis of the dynamic motion of interconnected rigid and flexible bodies. This method is used to examine the effect of the elastic deformation on the driving forces in flexible mechanical systems. The driving forces are expressed in terms of the specified motion trajectories and the deformations of the elastic members. The system equations of motion are formulated using Lagrange's equation. A finite element discretization of the flexible bodies is used to define the deformation degrees of freedom. The algebraic constraint equations that describe the motion trajectories and joint constraints between adjacent bodies are adjoined to the system differential equations of motion using the vector of Lagrange multipliers. A unique displacement field is then identified by imposing an appropriate set of reference conditions. The effect of the nonlinear centrifugal and Coriolis forces that depend on the body displacements and velocities are taken into consideration. A direct numerical integration method coupled with a Newton-Raphson algorithm is used to solve the resulting nonlinear differential and algebraic equations of motion. The formulation obtained for the flexible mechanical system is compared with the rigid body dynamic formulation. The effect of the sampling time, number of vibration modes, the viscous damping, and the selection of the constrained modes are examined. The results presented in this numerical study demonstrate that the use of the driving forees obtained using the rigid body analysis can lead to a significant error when these forces are used as the feedforward control law for the flexible mechanical system. The analysis presented in this investigation differs significantly from previously published work in many ways. It includes the effect of the structural flexibility on the centrifugal and Coriolis forces, it accounts for all inertia nonlinearities resulting from the coupling between the rigid body and elastic displacements, it uses a precise definition of the equipollent systems of forces in flexible body dynamics, it demonstrates the use of general purpose multibody computer codes in the feedforward control of flexible mechanical systems, and it demonstrates numerically the effect of the selected set of constrained modes on the feedforward control law.  相似文献   

19.
A numerical method is developed for solving the 3D, unsteady, incompressible Navier–Stokes equations in curvilinear coordinates containing immersed boundaries (IBs) of arbitrary geometrical complexity moving and deforming under forces acting on the body. Since simulations of flow in complex geometries with deformable surfaces require special treatment, the present approach combines a hybrid immersed boundary method (HIBM) for handling complex moving boundaries and a material point method (MPM) for resolving structural stresses and movement. This combined HIBM & MPM approach is presented as an effective approach for solving fluid–structure interaction (FSI) problems. In the HIBM, a curvilinear grid is defined and the variable values at grid points adjacent to a boundary are forced or interpolated to satisfy the boundary conditions. The MPM is used for solving the equations of solid structure and communicates with the fluid through appropriate interface‐boundary conditions. The governing flow equations are discretized on a non‐staggered grid layout using second‐order accurate finite‐difference formulas. The discrete equations are integrated in time via a second‐order accurate dual time stepping, artificial compressibility scheme. Unstructured, triangular meshes are employed to discretize the complex surface of the IBs. The nodes of the surface mesh constitute a set of Lagrangian control points used for tracking the motion of the flexible body. The equations of the solid body are integrated in time via the MPM. At every instant in time, the influence of the body on the flow is accounted for by applying boundary conditions at stationary curvilinear grid nodes located in the exterior but in the immediate vicinity of the body by reconstructing the solution along the local normal to the body surface. The influence of the fluid on the body is defined through pressure and shear stresses acting on the surface of the body. The HIBM & MPM approach is validated for FSI problems by solving for a falling rigid and flexible sphere in a fluid‐filled channel. The behavior of a capsule in a shear flow was also examined. Agreement with the published results is excellent. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
The propagation of harmonic waves through a system formed of coaxial tubes filled with incompressible continua is considered as a model of arterial pulse propagation in the craniospinal cavity. The inner tube represents a blood vessel and is modelled as a thin-walled membrane shell. The outer tube is assumed to be rigid to account for the constraint imposed on the vessels by the skull and the vertebrae. We consider two models: in the first model the annulus between the tubes is filled with fluid; in the second model the annulus is filled with a viscoelastic solid separated from the tubes by thin layers of fluid. In both models, the elastic tube is filled with fluid. The motion of the fluid is described by the linearized form of the Navier–Stokes equations, and the motion of the solid by classical elasticity theory. The results show that the wave speed in the system is lower than that for a fluid-filled elastic tube free of any constraint. This is due to the stresses generated to satisfy the condition that the volume in the system has to be conserved. However, the effect of the constraint weakens as the radius of the outer tube is increased, and it should be insignificant for the typical physiological parameter range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号