首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We present a new rapid CE method to measure adenine nucleotides adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP) in cells. The short-end injection mode allows a decrease in the analysis time by injecting samples at the outlet end of a silica capillary closest to the detection window, reducing the migration distance. Moreover, the use of methylcellulose (MC) as run buffer additive to suppress EOF permits to further reduce the migration times of analytes. Thus, when a capillary with an effective length of 10.2 cm was used with a 60 mmol/L sodium acetate buffer pH 3.80 in the presence of 0.01% of MC, the migration time of analytes were 1.35 min for ATP, 1.85 min for ADP, and 4.64 min for AMP. These conditions gave a good reproducibility for intra- and interassay (CV <4 and 8%, respectively) and all the procedure demonstrated an excellent analytical recovery (from 98.3 to 99 %). The method suitability was proved both on red blood cells and in spermatozoa. We compared our proposed method to a spectrophotometric assay, by measuring ATP levels in 40 spermatozoa samples. The obtained data were analyzed by the Passing and Bablok regression and Bland-Altman test.  相似文献   

2.
Simultaneous determination of adenosine and adenosine‐5′‐triphosphate has been described using nanogold modified indium tin oxide electrode. Gold nanoparticles catalyze adenosine oxidation which results in increasing separation of oxidation peaks of adenosine and ATP, making it possible to determine adenosine and adenosine‐5′‐triphosphate simultaneously. The detection limits for adenosine and ATP were found as 0.07 μM and 0.10 μM respectively with sensitivity 22.9 nA μM?1 and 20.9 nA μM?1. The proposed method was also used for sensing the compounds in biological samples. Influence of various square‐wave parameters and different pH conditions on peak current has also been reported.  相似文献   

3.
In this study, we have developed a method to assess adenosine 5?‐triphosphate by adsorptive extraction using surface adenosine 5′‐triphosphate‐imprinted polymer over polystyrene nanoparticles (412 ± 16 nm) for selective recognition/separation from urine. Molecularly imprinted polymer was synthesized by emulsion copolymerization reaction using adenosine 5′‐triphosphate as a template, functional monomers (methacrylic acid, N‐isopropyl acrylamide, and dimethylamino ethylmethacrylate) and a crosslinker, methylenebisacrylamide. The binding capacities of imprinted and non‐imprinted polymers were measured using high‐performance liquid chromatography with UV detection with a detection limit of 1.6 ± 0.02 µM of adenosine 5′‐triphosphate in the urine. High binding affinity (QMIP, 42.65 µmol/g), and high selectivity and specificity to adenosine 5′‐triphosphate compared to other competitive nucleotides including adenosine 5?‐diphosphate, adenosine 5?‐monophosphate, and analogs such as adenosine, adenine, uridine, uric acid, and creatinine were observed. The imprinting efficiency of imprinted polymer is 2.11 for urine (QMIP, 100.3 µmol/g) and 2.51 for synthetic urine (QMIP, 48.5 µmol/g). The extraction protocol was successfully applied to the direct extraction of adenosine 5′‐triphosphate from spiked human urine indicating that this synthesized molecularly imprinted polymer allowed adenosine 5′‐triphosphate to be preconcentrated while simultaneously interfering compounds were removed from the matrix. These submicron imprinted polymers over nano polystyrene spheres have a potential in the pharmaceutical industries and clinical analysis applications.  相似文献   

4.
Purine 3′:5′‐cyclic nucleotides are very well known for their role as the secondary messengers in hormone action and cellular signal transduction. Nonetheless, their solid‐state conformational details still require investigation. Five crystals containing purine 3′:5′‐cyclic nucleotides have been obtained and structurally characterized, namely adenosine 3′:5′‐cyclic phosphate dihydrate, C10H12N5O6P·2H2O or cAMP·2H2O, (I), adenosine 3′:5′‐cyclic phosphate 0.3‐hydrate, C10H12N5O6P·0.3H2O or cAMP·0.3H2O, (II), guanosine 3′:5′‐cyclic phosphate pentahydrate, C10H12N5O7P·5H2O or cGMP·5H2O, (III), sodium guanosine 3′:5′‐cyclic phosphate tetrahydrate, Na+·C10H11N5O7P·4H2O or Na(cGMP)·4H2O, (IV), and sodium inosine 3′:5′‐cyclic phosphate tetrahydrate, Na+·C10H10N4O7P·4H2O or Na(cIMP)·4H2O, (V). Most of the cyclic nucleotide zwitterions/anions [two from four cAMP present in total in (I) and (II), cGMP in (III), cGMP in (IV) and cIMP in (V)] are syn conformers about the N‐glycosidic bond, and this nucleobase arrangement is accompanied by Crib—H…Npur hydrogen bonds (rib = ribose and pur = purine). The base orientation is tuned by the ribose pucker. An analysis of data obtained from the Cambridge Structural Database made in the context of synanti conformational preferences has revealed that among the syn conformers of various purine nucleotides, cyclic nucleotides and dinucleotides predominate significantly. The interactions stabilizing the syn conformation have been indicated. The inter‐nucleotide contacts in (I)–(V) have been systematized in terms of the chemical groups involved. All five structures display three‐dimensional hydrogen‐bonded networks.  相似文献   

5.
3′:5′‐Cyclic nucleotides play an outstanding role in signal transduction at the cellular level but, in spite of comprehensive knowledge of the biological role of cyclic nucleotides, their structures are not established fully. Two hydrated sodium salts of thymidine 3′:5′‐cyclic phosphate (cdTMP, C10H12N2O7P), namely sodium thymidine 3′:5′‐cyclic phosphate heptahydrate, Na+·C10H12N2O7P·7H2O or Na(cdTMP)·7H2O, (I), and sodium thymidine 3′:5′‐cyclic phosphate 3.7‐hydrate, Na+·C10H12N2O7P·3.7H2O or Na(cdTMP)·3.7H2O, (II), have been obtained in crystalline form and structurally characterized, revealing one nucleotide in the asymmetric unit of (I) and eight different nucleotides in (II). All the cyclic nucleotide anions adopt a similar conformation with regard to nucleobase orientation, sugar conformation and 1,3,2‐dioxaphosphorinane ring puckering. In (I), no direct inter‐nucleotide hydrogen bonds are present, and adjacent nucleotide anions interact via water‐mediated and Na+‐mediated contacts. In contrast, in (II), direct thymine–phosphate N—H...O inter‐nucleotide hydrogen bonds occur and these are assisted by numerous inter‐nucleotide C—H...O contacts, giving rise to the self‐assembly of cdTMP anions into three different ribbons. Two of these three ribbons run in the same direction, while the third is antiparallel.  相似文献   

6.
In this paper a molecular wire modified carbon paste electrode (MW‐CPE) was firstly prepared by mixing graphite powder with diphenylacetylene (DPA). Then a graphene (GR) and chitosan (CTS) composite film was further modified on the surface of MW‐CPE to receive the graphene functionalized electrode (CTS‐GR/MW‐CPE), which was used for the sensitive electrochemical detection of adenosine‐5′‐triphosphate (ATP). The CTS‐GR/MW‐CPE exhibited excellent electrochemical performance and the electrochemical behavior of ATP on the CTS‐GR/MW‐CPE was carefully studied by cyclic voltammetry with an irreversible oxidation peak appearing at 1.369 V (vs. SCE). The electrochemical parameters such as charge transfer coefficient (α) and electrode reaction standard rate constant (ks) were calculated with the results of 0.53 and 5.28×10?6 s?1, respectively. By using differential pulse voltammetry (DPV) as detection technique, the oxidation peak current showed good linear relationship with ATP concentration in the range from 1.0 nM to 700.0 µM with a detection limit of 0.342 nM (3σ). The common coexisting substances, such as uric acid, ascorbic acid and guanosine‐5′‐triphosphate (GTP), showed no interferences and the modified electrode was successfully applied to injection sample detection.  相似文献   

7.
Precolumn derivatization of six short‐chain aliphatic amines by a near‐infrared dye, 1‐(ε‐succinimydyl‐hexanoate)‐1′‐methyl‐3,3,3′,3′‐tetramethyl‐indocarbocyanine‐5,5′‐ disulfonate potassium (MeCy5‐OSu), followed by MEKC–CE–LIF detection has been developed as a method for the determination of aliphatic amines in environmental water and food. Optimum derivatization was operated nicely in pH 9.0 borate buffer at 20°C for 30 min. Well separated peaks were observed with a pH 9.5 BGE containing 10 mmol L?1 phosphoric acid, 20 mmol L?1 SDS, and 7% methanol buffered with 1.0 mol L?1 NaOH. The separation procedure was rapidly achieved within 11 min and the matrix interferences could be effectively eliminated. A linear calibration graph was obtained for 5–200 nmol L?1 analytes with a correlation coefficient in the range 0.9933–0.9995 for amines. This method was successfully utilized to determine aliphatic amines in lake, sewage water, and red wine with recoveries ranging from 96.4 to 105% and the RSDs ranging from 0.9 to 2.9%. Near‐infrared, LIF‐detector‐compatible MeCy5‐OSu was proved suitable for the accurate, sensitive, and rapid separation and determination of aliphatic amines in water and food samples.  相似文献   

8.
The ring‐closing reaction of 5′‐adenosine monophosphate (5′‐AMP) to generate cyclic 3′, 5′‐adenosine monophosphate (cAMP) and H2O was theoretically investigated at the B3LYP/6‐31G**level. It was found that the ring‐closing reaction of 5′‐AMP may proceed in a synchronous way or in a stepwise way. For the latter, the reaction is a multichannel elimination reaction including inner H transfer. The potential energy surface of Path 3 is lowest in all the ring‐closing reaction paths. In addition, H shuttling reaction with the participation of a water molecule to act as a shuttle were also studied at the same level. The calculations indicate that the participation of a water molecule facilitates hydrogen transfer reaction. Our present calculations rationalized all the possible reaction channels. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

9.
Isoguanosine ( 3 ) underwent a coupling reaction with diaryl disulfides in the presence of tri‐n‐butylphosphine when its 6‐amino group was protected by N,N‐dimethylaminomethylidene. The synthesis of 5′‐deoxy‐N3,5′‐cycloisoguanosine ( 6 ) and its 2′,3′‐O‐isopropylidene derivative ( 11 ) were accomplished in excellent yields from isoguanosines ( 3 & 10 ) in the presence of triphenylphospine and carbon tetrachloride in pyridine. Chlorination at the 5′‐position of isoguanosine ( 3 ) with thionyl chloride followed by the aqueous base‐promoted cyclization afforded the same product 6 . The structures were elucidated by spectroscopic analysis including IR, UV, 1‐D and 2‐D NMR.  相似文献   

10.
The formation constants of the species formed in the systems H+ + dimethyltin(IV) + 5′‐IMP and 5′‐UMP, H+ + 5′‐IMP and H+ + 5′‐UMP have been determined in aqueous solution in the pH range 1.5–9.5 at constant temperature (25 °C) and constant ionic strength (0.1 mol dm−3 NaClO4), using spectrophotometric and potentiometric techniques. 1H and 31P NMR investigations in aqueous solution confirmed the species formation. The precipitated complexes of IMP and UMP by Me2Sn(IV)2+ at low pH values were characterized by elemental analysis and FTIR spectroscopy methods, the bonding sites of the ligands were determined and ruled out purine and pyrimidine moieties (N‐7 and N‐1 in IMP and N‐3 in UMP, respectively) while a bidentated coordination of the phosphate group is concluded in both cases. Finally, the experiments revealed the existence of complexes with trigonal bipyramidal structures that is in agreement with similar systems resulted previously. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The direct accumulation of 6‐thioguanosine (6‐TG) and its electrochemistry has been studied by cyclic voltammetry in different conditions physical and chemical. In a first moment the surface of electrode was modified with gold nanoparticles. This modification was realized by electrodeposition on the active surface of a glassy carbon electrode with a HAuCl4 solution. The nucleotide 6‐thioguanosine was deposited in this gold nanoparticles monolayer. The study of accumulation of other nucleotide, adenosine 5′‐monophosphate (AMP), was realized by the direct reaction with 6‐TG deposited. The conditions of the reaction and its electrochemical response were tested to fix the ideal conditions of its determination. The ideal conditions of formation of the monolayer and its electrochemical response were studied; the possibility of preconcentration of 6‐TG nucleotide in gold nanoparticles, the possibility of catalysis and limits of identification and quantification were also determined. The method proposed can be applied in direct determination of oligonucleotides. In this respect we applied it in the determination of AMP in a commercial product of infantile nutrition.  相似文献   

12.
A fast, high‐yielding and reliable method for the synthesis of DNA‐ and RNA 5′‐triphosphates is reported. After synthesizing DNA or RNA oligonucleotides by automated oligonucleotide synthesis, 5‐chloro‐saligenyl‐N,N‐diisopropylphosphoramidite was coupled to the 5′‐end. Oxidation of the formed 5′‐phosphite using the same oxidizing reagent used in standard oligonucleotide synthesis led to 5′‐cycloSal‐oligonucleotides. Reaction of the support‐bonded 5′‐cycloSal‐oligonucleotide with pyrophosphate yielded the corresponding 5′‐triphosphates. The 5′‐triphosphorylated DNA and RNA oligonucleotides were obtained after cleavage from the support in high purity and excellent yields. The whole reaction sequence was adapted to be used on a standard oligonucleotide synthesizer.  相似文献   

13.
The synthesis of two O‐2′,3′‐cyclic ketals, i.e., 5 and 6 , of the cytostatic 5‐fluorouridine ( 2 ), carrying a cyclopentane and/or a cyclohexane ring, respectively, is described. The novel compounds were characterized by 1H‐, 19F‐, and 13C‐NMR, and UV spectroscopy, as well as by elemental analyses. Their crystal structures were determined by X‐ray analysis. Both compounds 5 and 6 show an anti‐conformation at the N‐glycosidic bond which is biased from +ac to +ap compared to the parent nucleoside 2 . The sugar puckering is changed from 2′E to 3′E going along with a reduction of the puckering amplitude τm by ca. 10–13° due to the ketalization. The conformation about the sugar exocyclic bond C(4′)? C(5′) of 5 and 6 remains unchanged, i.e., g+, compared with compound 2 .  相似文献   

14.
To measure the hydrophobic character of the ribose moiety of doridosine on the adenosine receptors, 2′,3′-didehydro-2′,3′-dideoxydoridosine (2) and 2′,3′-dideoxydoridosine (3) were prepared. Initial treatment of doridosine with N,N-dimethylformamide diethylacetal, and subsequently with tert-butyldimethylsilyl chloride gave 5. Compound 5 was then reacted with 1,1′-thiocarbonyldiimidazole and the resulting thionocarbonate 6 was heated with triethyl phosphite at 135°C to afford 7. Treatment of compound 7 with tetrabutylammonium fluoride and methanolic ammonia furnished compound 2 in good yield. Compound 2 was subjected to catalytic hydrogenation affording compound 3 in 85% yield.  相似文献   

15.
The I2‐catalyzed preparation of spiro[1,3,4‐benzotriazepine‐2,3′‐indole]‐2′,5(1H,1′H)‐diones from 2‐aminobenzohydrazide and isatins in MeCN at room temperature in good‐to‐excellent yields is described. The structure of 3 was corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS data). A plausible mechanism for this type of reaction is proposed (Scheme 2).  相似文献   

16.
An efficient route to 2′,3′‐dihydro‐2′‐thioxospiro[indole‐3,6′‐[1,3]thiazin]‐2(1H)‐one derivatives is described. It involves the reaction of isatine, 1‐phenyl‐2‐(1,1,1‐triphenyl‐λ5‐phosphanylidene)ethan‐1‐one, and different amines in the presence of CS2 in dry MeOH at reflux (Scheme 1). The alkyl carbamodithioate, which results from the addition of the amine to CS2, is added to the α,β‐unsaturated ketone, resulting from the reaction between 1‐phenyl‐2‐(1,1,1‐triphenyl‐λ5‐phosphanylidene)ethan‐1‐one and isatine, to produce the 3′‐alkyl‐2′,3′‐dihydro‐4′‐phenyl‐2′‐thioxospiro[indole‐3,6′‐[1,3]thiazin]‐2(1H)‐one derivatives in excellent yields (Scheme 2). Their structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses.  相似文献   

17.
A new electrochemical method was proposed for the determination of adenosine‐5′‐triphosphate (ATP) based on the electrooxidation at a molecular wire (MW) modified carbon paste electrode (CPE), which was fabricated with diphenylacetylene (DPA) as the binder. A single well‐defined irreversible oxidation peak of ATP appeared on MW‐CPE with adsorption‐controlled process and enhanced electrochemical response in a pH 3.0 Britton‐Robinson buffer solution, which was due to the presence of high conductive DPA in the electrode. The electrochemical parameters of ATP were calculated with the electron transfer coefficient (α) as 0.54, the electron transfer number (n) as 1.9, the apparent heterogeneous electron transfer rate constant (ks) as 2.67 × 10?5 s?1 and the surface coverage (ΓT) as 4.15 × 10?10 mol cm?2. Under the selected conditions the oxidation peak current was proportional to ATP concentration in the range from 1.0 × 10?7 mol L?1 to 2.0 × 10?3 mol L?1 with the detection limit as 1.28 × 10?8 mol L?1 (3σ) by sensitive differential pulse voltammetry. The proposed method showed good selectivity without the interferences of coexisting substances and was successful applied to the ATP injection samples detection.  相似文献   

18.
A classical model of “molecular machine,” which acts as an ON–OFF switch for 2,2′‐bipyridyl‐3,3′‐15‐crown‐5 ( L ), has been theoretically studied. It is highly important to understand the mechanism of this switch. The alkali‐metal cations (Na+ and K+) and W(CO)4 fragment are introduced to coordinate with the different active sites of L , respectively. The density functional theory (DFT) method is used for understanding the stereochemical structural natures and thermodynamic properties of all the target molecules at B3LYP/6‐31G(d) and SDD (Stuttgart–Dresden) level, together with the corresponding effective core potential (ECP) for tungsten (W). The fully optimized geometries have been performed with real frequencies, which indicate the minima states. The nucleophilicity of L has been investigated by the Fukui functions. The natural bond orbital analysis is used to study the intermolecular charge‐transfer interactions and explore the origin of the internal forces of the molecular switch. In addition, the binding energies, enthalpies, Gibbs free energies, and the cation exchange energies have been studied for L , W(CO)4 L , and their corresponding complexes. The properties of the complexes displayed by in presence or absence of the W(CO)4 fragment are also analyzed. The calculated results of allosterism displayed by L are in a good agreement with the experimental results. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

19.
Two new one‐dimensional CuII coordination polymers (CPs) containing the C2h‐symmetric terphenyl‐based dicarboxylate linker 1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylate (3,3′‐TPDC), namely catena‐poly[[bis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ4O,O′:O′′:O′′′] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), and catena‐poly[[aquabis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ2O3:O3′] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4‐diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours, i.e. violet plates for (I) and blue needles for (II), both of which were analysed by X‐ray crystallography. The 3,3′‐TPDC bridging ligands coordinate the CuII ions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one‐dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutually trans positions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one‐dimensional coordination polymer chains, forming a two‐dimensional network in (I) and a three‐dimensional network in (II).  相似文献   

20.
A capillary zone clectrophoresis method was developed for the determination of IMP and GIMP, commonly used as flavor enhancers in poultry feed, in a real sample of complex composition. A baseline separation of inosine 5′-monophosphate and guanosine 5′-monophosphate was achieved within 10 min and the other components in the sample did not interfere with the separation. Quantitative results obtained from pig feed samples are presented. The separation conditions and experimental reproducibility are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号