首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3′:5′‐Cyclic nucleotides play an outstanding role in signal transduction at the cellular level but, in spite of comprehensive knowledge of the biological role of cyclic nucleotides, their structures are not established fully. Two hydrated sodium salts of thymidine 3′:5′‐cyclic phosphate (cdTMP, C10H12N2O7P), namely sodium thymidine 3′:5′‐cyclic phosphate heptahydrate, Na+·C10H12N2O7P·7H2O or Na(cdTMP)·7H2O, (I), and sodium thymidine 3′:5′‐cyclic phosphate 3.7‐hydrate, Na+·C10H12N2O7P·3.7H2O or Na(cdTMP)·3.7H2O, (II), have been obtained in crystalline form and structurally characterized, revealing one nucleotide in the asymmetric unit of (I) and eight different nucleotides in (II). All the cyclic nucleotide anions adopt a similar conformation with regard to nucleobase orientation, sugar conformation and 1,3,2‐dioxaphosphorinane ring puckering. In (I), no direct inter‐nucleotide hydrogen bonds are present, and adjacent nucleotide anions interact via water‐mediated and Na+‐mediated contacts. In contrast, in (II), direct thymine–phosphate N—H...O inter‐nucleotide hydrogen bonds occur and these are assisted by numerous inter‐nucleotide C—H...O contacts, giving rise to the self‐assembly of cdTMP anions into three different ribbons. Two of these three ribbons run in the same direction, while the third is antiparallel.  相似文献   

2.
An efficient route to 2′,3′‐dihydro‐2′‐thioxospiro[indole‐3,6′‐[1,3]thiazin]‐2(1H)‐one derivatives is described. It involves the reaction of isatine, 1‐phenyl‐2‐(1,1,1‐triphenyl‐λ5‐phosphanylidene)ethan‐1‐one, and different amines in the presence of CS2 in dry MeOH at reflux (Scheme 1). The alkyl carbamodithioate, which results from the addition of the amine to CS2, is added to the α,β‐unsaturated ketone, resulting from the reaction between 1‐phenyl‐2‐(1,1,1‐triphenyl‐λ5‐phosphanylidene)ethan‐1‐one and isatine, to produce the 3′‐alkyl‐2′,3′‐dihydro‐4′‐phenyl‐2′‐thioxospiro[indole‐3,6′‐[1,3]thiazin]‐2(1H)‐one derivatives in excellent yields (Scheme 2). Their structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses.  相似文献   

3.
The title compound {systematic name: 4‐amino‐5‐cyclopropyl‐7‐(2‐deoxy‐β‐D‐erythro‐pentofuranosyl)‐7H‐pyrrolo[2,3‐d]pyrimidine}, C14H18N4O3, exhibits an anti glycosylic bond conformation, with the torsion angle χ = −108.7 (2)°. The furanose group shows a twisted C1′‐exo sugar pucker (S‐type), with P = 120.0 (2)° and τm = 40.4 (1)°. The orientation of the exocyclic C4′—C5′ bond is ‐ap (trans), with the torsion angle γ = −167.1 (2)°. The cyclopropyl substituent points away from the nucleobase (anti orientation). Within the three‐dimensional extended crystal structure, the individual molecules are stacked and arranged into layers, which are highly ordered and stabilized by hydrogen bonding. The O atom of the exocyclic 5′‐hydroxy group of the sugar residue acts as an acceptor, forming a bifurcated hydrogen bond to the amino groups of two different neighbouring molecules. By this means, four neighbouring molecules form a rhomboidal arrangement of two bifurcated hydrogen bonds involving two amino groups and two O5′ atoms of the sugar residues.  相似文献   

4.
Purine 3′:5′‐cyclic nucleotides are very well known for their role as the secondary messengers in hormone action and cellular signal transduction. Nonetheless, their solid‐state conformational details still require investigation. Five crystals containing purine 3′:5′‐cyclic nucleotides have been obtained and structurally characterized, namely adenosine 3′:5′‐cyclic phosphate dihydrate, C10H12N5O6P·2H2O or cAMP·2H2O, (I), adenosine 3′:5′‐cyclic phosphate 0.3‐hydrate, C10H12N5O6P·0.3H2O or cAMP·0.3H2O, (II), guanosine 3′:5′‐cyclic phosphate pentahydrate, C10H12N5O7P·5H2O or cGMP·5H2O, (III), sodium guanosine 3′:5′‐cyclic phosphate tetrahydrate, Na+·C10H11N5O7P·4H2O or Na(cGMP)·4H2O, (IV), and sodium inosine 3′:5′‐cyclic phosphate tetrahydrate, Na+·C10H10N4O7P·4H2O or Na(cIMP)·4H2O, (V). Most of the cyclic nucleotide zwitterions/anions [two from four cAMP present in total in (I) and (II), cGMP in (III), cGMP in (IV) and cIMP in (V)] are syn conformers about the N‐glycosidic bond, and this nucleobase arrangement is accompanied by Crib—H…Npur hydrogen bonds (rib = ribose and pur = purine). The base orientation is tuned by the ribose pucker. An analysis of data obtained from the Cambridge Structural Database made in the context of synanti conformational preferences has revealed that among the syn conformers of various purine nucleotides, cyclic nucleotides and dinucleotides predominate significantly. The interactions stabilizing the syn conformation have been indicated. The inter‐nucleotide contacts in (I)–(V) have been systematized in terms of the chemical groups involved. All five structures display three‐dimensional hydrogen‐bonded networks.  相似文献   

5.
The I2‐catalyzed preparation of spiro[1,3,4‐benzotriazepine‐2,3′‐indole]‐2′,5(1H,1′H)‐diones from 2‐aminobenzohydrazide and isatins in MeCN at room temperature in good‐to‐excellent yields is described. The structure of 3 was corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS data). A plausible mechanism for this type of reaction is proposed (Scheme 2).  相似文献   

6.
The molecular structures of trichlorido(2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)gallium(III), [GaCl3(C15H11N3)], and tribromido(2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)gallium(III), [GaBr3(C15H11N3)], are isostructural, with the GaIII atom displaying an octahedral geometry. It is shown that the Ga—N distances in the two complexes are the same within experimental error, in contrast to expected bond lengthening in the bromide complex due to the lower Lewis acidity of GaBr3. Thus, masking of the Lewis acidity trends in the solid state is observed not only for complexes of group 13 metal halides with monodentate ligands but for complexes with the polydentate 2,2′:6′,2′′‐terpyridine donor as well.  相似文献   

7.
In the monohydrate of 2‐amino‐8‐(2‐deoxy‐α‐d ‐erythro‐pento­furan­osyl)‐8H‐imidazo­[1,2‐a]­[1,3,5]­triazin‐4‐one, C10H13N5O4·H2O, denoted (I) or αZd, the conformation of the N‐gly­cosyl­ic bond is in the high‐anti range [χ = 87.5 (3)°]. The 2′‐deoxy­ribo­furan­ose moiety adopts a C2′‐endo,C3′‐exo(2′T3′) sugar puckering (S‐type sugar) and the conformation at the C4′—C5′ bond is ?sc (trans).  相似文献   

8.
首次全合成来源于鼠李属植物中的两个天然产物2’, 3’-di-O-acetylfrangulin A (1) 和 prinoidin (2),它们对KB细胞表现出较好的细胞毒活性。通过1H NMR, 13C NMR, 1H-1H COSY, HMQC 和 HMBC确证了两个化合物的结构。  相似文献   

9.
((?)‐Menthyl (S)‐6′‐acrylyl‐2′‐methyloxy‐1,1′‐binaphthalene‐2‐carboxylate ( 3 ) was synthesized and anionically polymerized using n‐BuLi as an initiator in toluene. The monomer 3 was levorotatory and had an [α]D25 value of ?72.4, but its corresponding polymer poly‐ 3 was dextrorotatory and showed an [α]D25 value of +162.0. Poly‐ 3 was confirmed to exist in the form of one‐handed helical structure in solution by means of comparing the specific optical rotation and the CD spectra with that of 3 and the model compounds such as (?)‐menthyl (S)‐6′‐propionyl‐2′‐methyloxy‐1,1′‐binaphthalene‐2‐carboxylate 2b and (?)‐menthyl (S)‐6′‐heptanoyl‐2′‐methyloxy‐1,1′‐binaphthalene‐2‐carboxylate 2c . This conclusion was also confirmed by the fact that the g‐value of poly‐ 3 is about 11 times of that of monomer 3 .  相似文献   

10.
In the title compound, 4‐amino‐2‐(2‐O‐methyl‐β‐d ‐ribofuranos­yl)‐2H‐pyrazolo[3,4‐d]pyrimidine monohydrate, C11H15N5O4·H2O, the conformation of the N‐glycosylic bond is syn [χ = 20.1 (2)°]. The ribofuran­ose moiety shows a C3′‐endo (3T2) sugar puckering (N‐type sugar), and the conformation at the exocyclic C4′—C5′ bond is −ap (trans). The nucleobases are stacked head‐to‐head. The three‐dimensional packing of the crystal structure is stabilized by hydrogen bonds between the 2′‐O‐methyl­ribonucleosides and the solvent mol­ecules.  相似文献   

11.
In the title salt, C14H18N22+·2C9H5N4O, the 1,1′‐diethyl‐4,4′‐bipyridine‐1,1′‐diium dication lies across a centre of inversion in the space group P21/c. In the 1,1,3,3‐tetracyano‐2‐ethoxypropenide anion, the two independent –C(CN)2 units are rotated, in conrotatory fashion, out of the plane of the central propenide unit, making dihedral angles with the central unit of 16.0 (2) and 23.0 (2)°. The ionic components are linked by C—H...N hydrogen bonds to form a complex sheet structure, within which each cation acts as a sixfold donor of hydrogen bonds and each anion acts as a threefold acceptor of hydrogen bonds.  相似文献   

12.
Two new one‐dimensional CuII coordination polymers (CPs) containing the C2h‐symmetric terphenyl‐based dicarboxylate linker 1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylate (3,3′‐TPDC), namely catena‐poly[[bis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ4O,O′:O′′:O′′′] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), and catena‐poly[[aquabis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ2O3:O3′] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4‐diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours, i.e. violet plates for (I) and blue needles for (II), both of which were analysed by X‐ray crystallography. The 3,3′‐TPDC bridging ligands coordinate the CuII ions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one‐dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutually trans positions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one‐dimensional coordination polymer chains, forming a two‐dimensional network in (I) and a three‐dimensional network in (II).  相似文献   

13.
Two new layered complexes with the formulas of {[Cu(H2O)(HL)2Cl](NO3)}n ( 1 ) and {[Cu(H2O)2(HL)2](NO3)2}n ( 2 ) were solvothermally synthesized by the reactions of the bulky conjugated 4′‐(4‐hydroxyphenyl)‐4,2′:6′,4′′‐terpyridine ligand (HL) with different CuII salts, which were further used as photocatalysts to achieve hydrogen production from water splitting. Single‐crystal structural analyses reveal that both complexes feature coplanar (4 4) layers with different connection manners between the HL extended Z‐shaped chains. More interestingly, 1 possessing more negative conduction band potential and higher structural stability exhibits a large hydrogen production rate of 2.43 mmol · g–1 · h–1, which is four times higher than that of 2 . Thus, the CuII‐based coordination polymers modified by the bulky conjugated organic ligand can become potentially promising non‐Pt photocatalysts for hydrogen production from water splitting.  相似文献   

14.
In the title compound, 4‐amino‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐1H‐benzotriazole, C11H14N4O3, the conformation of the N‐glycosidic bond is in the high‐anti range [χ = ?77.1 (4)°] and the 2′‐deoxy­ribo­furan­ose moiety adopts a 2′‐­endo (2E) sugar puckering. The 5′‐hydroxyl group is disordered and has conformations ap with γ = 171.1 (3)° [occupation of 61.4 (3)%] and +sc with γ = 52.4 (6)° [occupation of 38.6 (3)%]. The nucleobases are stacked in the crystal state.  相似文献   

15.
Oligonucleotides containing the 5‐substituted 2′‐deoxyuridines 1b or 1d bearing side chains with terminal C?C bonds are described, and their duplex stability is compared with oligonucleotides containing the 5‐alkynyl compounds 1a or 1c with only one nonterminal C?C bond in the side chain. For this, 5‐iodo‐2′‐deoxyuridine ( 3 ) and diynes or alkynes were employed as starting materials in the Sonogashira cross‐coupling reaction (Scheme 1). Phosphoramidites 2b – d were prepared (Scheme 3) and used as building blocks in solid‐phase synthesis. Tm Measurements demonstrated that DNA duplexes containing the octa‐1,7‐diynyl side chain or a diprop‐2‐ynyl ether residue, i.e., containing 1b or 1d , are more stable than those containing only one triple bond, i.e., 1a or 1c (Table 3). The diyne‐modified nucleosides were employed in further functionalization reactions by using the protocol of the CuI‐catalyzed Huisgen–Meldal–Sharpless [2+3] cycloaddition (‘click chemistry’) (Scheme 2). An aliphatic azide, i. e., 3′‐azido‐3′‐deoxythymidine (AZT; 4 ), as well as the aromatic azido compound 5 were linked to the terminal alkyne group resulting in 1H‐1,2,3‐triazole‐modified derivatives 6 and 7 , respectively (Scheme 2), of which 6 forms a stable duplex DNA (Table 3). The Husigen–Meldal–Sharpless cycloaddition was also performed with oligonucleotides (Schemes 4 and 5).  相似文献   

16.
The structures of the isomeric nucleosides 4‐nitro‐1‐(β‐d ‐ribo­furan­osyl)‐1H‐indazole, C12H13N3O6, (I), and 4‐nitro‐2‐(β‐d ‐ribo­furan­osyl)‐2H‐indazole, C12H13N3O6, (II), have been determined. For compound (I), the conformation of the gly­cosylic bond is anti [χ = −93.6 (6)°] and the sugar puckering is C2′‐exo–C3′‐endo. Compound (II) shows two conformations in the crystalline state which differ mainly in the sugar pucker; type 1 adopts the C2′‐endo–C3′‐exo sugar puckering associated with a syn base orientation [χ = 43.7 (6)°] and type 2 shows C2′‐exo–C3′‐endo sugar puckering accompanied by a somewhat different syn base orientation [χ = 13.8 (6)°].  相似文献   

17.
Four metal‐organic frameworks (MOFs), {[Mn3.5L(OH)(HCOO)4(DMF)] · H2O} ( 1 ), {[In2.5L2O(OH)1.5(H2O)2] · DMF · CH3CN · 2H2O} ( 2 ), {[Pb4L3O(DMA)] · CH3CN} ( 3 ), and {[LaL(NO3)(DMF)2] · 2H2O} ( 4 ) were synthesized by utilizing the ligand 2,2′,6,6′‐tetramethoxy‐4,4′‐biphenyldicarboxylic acid (H2L) via solvothermal methods. All MOFs were characterized by single‐crystal X‐ray diffraction, powder X‐ray diffraction, thermogravimetric analysis, and infrared spectroscopy. In 1 , the Mn2+ ions are interconnected by formic groups in situ produced via DMF decomposition to form a rare 2D macrocyclic plane, which is further linked by L2– to construct the final 3D network. In 2 , 1D zip‐like infinite chain is formed and then interconnected to build the 3D framework. In 3 , a [Pb64‐O)2(O2C)10(DMA)2] cluster with a centrosymmetric [Pb64‐O)2]8+ octahedral core is formed in the 3D structure. In 4 , the La3+ ions are connected with each other through carboxylate groups of L2– to generate 1D zigzag chain, which is further linked by L2– to construct a 3D network with sra topology. Solid photoluminescence properties of 3 and 4 were also investigated.  相似文献   

18.
Two transition metal‐organic coordination polymers, [Mn2(1,3‐bdc)2(Me2bpy)2] · Me2bpy ( 1 ) and [Co(4,4′‐oba)(Me2bpy)] ( 2 ) were hydrothermally synthesized and structurally characterized by elemental analysis, IR spectroscopy, TG, and single‐crystal X‐ray diffraction [1,3‐H2bdc = benzene‐1,3‐dicarboxylic acid, H2oba = 4,4′‐oxybis(benzoic acid) Me2bpy = 4,4′‐dimethyl‐2,2′‐bipyridine]. Compound 1 crystallizes in the orthorhombic system, space group P212121, with a = 23.371(5), b = 14.419(3), and c = 14.251(3) Å. Compound 2 crystallizes in the monoclinic system, space group P21/c, with a = 7.4863(15), b = 18.272(4), c = 16.953(5) Å, and β = 107.44(3)°. The crystal structure of complex 1 is a wave‐like layer with central Mn2+ atoms bridged by 1,3‐bdc ligands, whereas the structure of compound 2 presents a ladder chain of hexacoordinate Co2+ atoms, in which the metal atoms are bridged by 4,4′‐oba ligands and decorated by Me2bpy ligands. The two compounds are further extended into 3D supramolecular structures through π–π stacking interactions. Additionally, the compounds show intense fluorescence in solid state at room temperature.  相似文献   

19.
This paper describes a method of preparation of new 3,5′‐dioxo‐2′‐phenyl‐1,3‐dihydrospiro[indene‐2,4′‐[1,3]oxazol]‐1‐yl acetate and its 5‐chloro‐ and bromoderivatives as products of interaction of N‐benzoylglycine (hippuric acid) with corresponding ortho‐formylbenzoic acids. The reaction carried out in acetic anhydride media in the presence of piperidine as catalyst. The novel spirocompounds were purified by column chromatography from multicomponent reaction mixtures. The composition of the spiro‐products was confirmed by C, H, N element analysis. The structure was established by IR, MS, 1H‐ and 13C‐NMR analysis including COSY 1H‐13C experiments.  相似文献   

20.
The new synthesized ligand (DADMBTZ = 2,2′‐diamino‐5,5′‐dimethyl‐4,4′‐bithiazole), which is mentioned in this text, is used for preparing the two new complexes [Zn(DADMBTZ)3](ClO4)2. 0.8MeOH.0.2H2O ( 1 ) and [Cd(DADMBTZ)3](ClO4)2 ( 2 ). The characterization was done by IR, 1H, 13C NMR spectroscopy, elemental analysis and single crystal X‐ray determination. In reaction with DADMBTZ, zinc(II) and cadmium(II) show different characterization. In 2 , to form a tris‐chelate complex with nearly C3 symmetry for coordination polyhedron, DADMBTZ acts as a bidentate ligand. In 1 , this difference maybe relevant to small radii of Zn2+ which make one of the DADMBTZ ligands act as a monodentate ligand to form the five coordinated Zn2+ complex. In both 1 and 2 complexes the anions are symmetrically different. 1 and 2 complexes form 2‐D and 3‐D networks via N‐H···O and N‐H···N hydrogen bonds, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号