首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A method is presented for direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using global collocation at Legendre-Gauss-Radau (LGR) points. A key feature of the method is that it provides an accurate way to map the KKT multipliers of the nonlinear programming problem to the costates of the optimal control problem. More precisely, it is shown that the dual multipliers for the discrete scheme correspond to a pseudospectral approximation of the adjoint equation using polynomials one degree smaller than that used for the state equation. The relationship between the coefficients of the pseudospectral scheme for the state equation and for the adjoint equation is established. Also, it is shown that the inverse of the pseudospectral LGR differentiation matrix is precisely the matrix associated with an implicit LGR integration scheme. Hence, the method presented in this paper can be thought of as either a global implicit integration method or a pseudospectral method. Numerical results show that the use of LGR collocation as described in this paper leads to the ability to determine accurate primal and dual solutions for both finite and infinite-horizon optimal control problems.  相似文献   

2.
Markus Glocker 《PAMM》2004,4(1):608-609
A large class of optimal control problems for hybrid dynamic systems can be formulated as mixed‐integer optimal control problems (MIOCPs). A decomposition approach is suggested to solve a special subclass of MIOCPs with mixed integer inner point state constraints. It is the intrinsic combinatorial complexity of the discrete variables in addition to the high nonlinearity of the continuous optimal control problem that forms the challenges in the theoretical and numerical solution of MIOCPs. During the solution procedure the problem is decomposed at the inner time points into a multiphase problem with mixed integer boundary constraints and phase transitions at unknown switching points. Due to a discretization of the state space at the switching points the problem can be decoupled into a family of continuous optimal control problems (OCPs) and a problem similar to the asymmetric group traveling salesman problem (AGTSP). The OCPs are transcribed by direct collocation to large‐scale nonlinear programming problems, which are solved efficiently by an advanced SQP method. The results are used as weights for the edges of the graph of the corresponding TSP‐like problem, which is solved by a Branch‐and‐Cut‐and‐Price (BCP) algorithm. The proposed approach is applied to a hybrid optimal control benchmark problem for a motorized traveling salesman. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
A theorem on error estimates for smooth nonlinear programming problems in Banach spaces is proved that can be used to derive optimal error estimates for optimal control problems. This theorem is applied to a class of optimal control problems for quasilinear elliptic equations. The state equation is approximated by a finite element scheme, while different discretization methods are used for the control functions. The distance of locally optimal controls to their discrete approximations is estimated.  相似文献   

4.
A combination of the hybrid spectral collocation technique and the homotopy analysis method is used to construct an iteration algorithm for solving a class of nonlinear optimal control problems (NOCPs). In fact, the nonlinear two-point boundary value problem (TPBVP), derived from the Pontryagin’s Maximum Principle (PMP), is solved by spectral homotopy analysis method (SHAM). For the first time, we present here a convergence proof for SHAM. We treat in detail Legendre collocation and Chebyshev collocation. It is indicated that Legendre collocation gives the same numerical results with Chebyshev collocation. Comparisons are made between SHAM, Matlab bvp4c generated results and results from literature such as homotopy perturbation method (HPM), optimal homotopy perturbation method (OHPM) and differential transformations.  相似文献   

5.
A general framework is developed for the finite element solution of optimal control problems governed by elliptic nonlinear partial differential equations. Typical applications are steady‐state problems in nonlinear continuum mechanics, where a certain property of the solution (a function of displacements, temperatures, etc.) is to be minimized by applying control loads. In contrast to existing formulations, which are based on the “adjoint state,” the present formulation is a direct one, which does not use adjoint variables. The formulation is presented first in a general nonlinear setting, then specialized to a case leading to a sequence of quadratic programming problems, and then specialized further to the unconstrained case. Linear governing partial differential equations are also considered as a special case in each of these categories. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15:371–388, 1999  相似文献   

6.

A new method is developed for solving optimal control problems whose solutions are nonsmooth. The method developed in this paper employs a modified form of the Legendre–Gauss–Radau orthogonal direct collocation method. This modified Legendre–Gauss–Radau method adds two variables and two constraints at the end of a mesh interval when compared with a previously developed standard Legendre–Gauss–Radau collocation method. The two additional variables are the time at the interface between two mesh intervals and the control at the end of each mesh interval. The two additional constraints are a collocation condition for those differential equations that depend upon the control and an inequality constraint on the control at the endpoint of each mesh interval. The additional constraints modify the search space of the nonlinear programming problem such that an accurate approximation to the location of the nonsmoothness is obtained. The transformed adjoint system of the modified Legendre–Gauss–Radau method is then developed. Using this transformed adjoint system, a method is developed to transform the Lagrange multipliers of the nonlinear programming problem to the costate of the optimal control problem. Furthermore, it is shown that the costate estimate satisfies one of the Weierstrass–Erdmann optimality conditions. Finally, the method developed in this paper is demonstrated on an example whose solution is nonsmooth.

  相似文献   

7.
《Optimization》2012,61(3):237-244
In this paper, we consider a class of nonlinear optimal control problems (Bolza-problems) with constraints of the control vector, initial and boundary conditions of the state vectors. The time interval is fixed. Our approach to parametrize both the state functions and the control functions is described by general piecewise polynomials with unknown coefficients (parameters), where a fixed partition of the time interval is used. Here each of these functions in a suitable way individually will be approximated by such polynomials. The optimal control problem thus is reduced to a mathematical programming problem for these parameters. The existence of an optimal solution is assumed. Convergence properties of this method are not considered in this paper.  相似文献   

8.
9.
A multiple-interval pseudospectral scheme is developed for solving nonlinear optimal control problems with time-varying delays, which employs collocation at the shifted flipped Jacobi-Gauss–Radau points. The new pseudospectral scheme has the following distinctive features/abilities: (i) it can directly and flexibly solve nonlinear optimal control problems with time-varying delays without the tedious quasilinearization procedure and the uniform mesh restriction on time domain decomposition, and (ii) it provides a smart approach to compute the values of state delay efficiently and stably, and a unified framework for solving standard and delay optimal control problems. Numerical results on benchmark delay optimal control problems including challenging practical engineering problems demonstrate that the proposed pseudospectral scheme is highly accurate, efficient and flexible.  相似文献   

10.
The solutions of most nonlinear optimal control problems are given in the form of open-loop optimal control which is computed from a given fixed initial condition. Optimal feedback control can in principle be obtained by solving the corresponding Hamilton-Jacobi-Bellman dynamic programming equation, though in general this is a difficult task. We propose a practical and effective alternative for constructing an approximate optimal feedback controller in the form of a feedforward neural network, and we justify this choice by several reasons. The controller is capable of approximately minimizing an arbitrary performance index for a nonlinear dynamical system for initial conditions arising from a nontrivial bounded subset of the state space. A direct training algorithm is proposed and several illustrative examples are given.This research was carried out with the support of a grant from the Australian Research Council.We thank the anonymous reviewers for their helpful comments.  相似文献   

11.
First- and second-order numerical methods for optimizing controlled dynamical systems with parameters are discussed. In unconstrained-parameter problems, the control parameters are optimized by applying the conjugate gradient method. A more accurate numerical solution in these problems is produced by Newton’s method based on a second-order functional increment formula. Next, a general optimal control problem with state constraints and parameters involved on the righthand sides of the controlled system and in the initial conditions is considered. This complicated problem is reduced to a mathematical programming one, followed by the search for optimal parameter values and control functions by applying a multimethod algorithm. The performance of the proposed technique is demonstrated by solving application problems.  相似文献   

12.
13.
The method of direct collocation with nonlinear programming (DCNLP) is a powerful tool to solve optimal control problems (OCP). In this method the solution time history is approximated with piecewise polynomials, which are constructed using interpolation points deriving from the Jacobi polynomials. Among the Jacobi polynomials family, Legendre and Chebyshev polynomials are the most used, but there is no evidence that they offer the best performance with respect to other family members. By solving different OCPs with interpolation points not only taken within the Jacoby family, the behavior of the Jacobi polynomials in the optimization problems is discussed. This paper focuses on spacecraft trajectories optimization problems. In particular orbit transfers, interplanetary transfers and station keepings are considered.  相似文献   

14.
一类神经网络模型的稳定性   总被引:2,自引:1,他引:1  
本文将一种求解凸规划问题的神经网络模型推广到求解一般的非凸非线性规划问题.理论分析表明;在适当的条件下,本文提出的求解非凸非线性规划问题的神经网络模型的平衡点是渐近稳定的,对应于非线性规划问题的局部最优解  相似文献   

15.
A B-spline collocation method is presented for nonlinear singularly-perturbed boundary-value problems with mixed boundary conditions. The quasilinearization technique is used to linearize the original nonlinear singular perturbation problem into a sequence of linear singular perturbation problems. The B-spline collocation method on piecewise uniform mesh is derived for the linear case and is used to solve each linear singular perturbation problem obtained through quasilinearization. The fitted mesh technique is employed to generate a piecewise uniform mesh, condensed in the neighborhood of the boundary layers. The convergence analysis is given and the method is shown to have second-order uniform convergence. The stability of the B-spline collocation system is discussed. Numerical experiments are conducted to demonstrate the efficiency of the method.  相似文献   

16.
Parametric nonlinear optimal control problems subject to control and state constraints are studied. Two discretization methods are discussed that transcribe optimal control problems into nonlinear programming problems for which SQP-methods provide efficient solution methods. It is shown that SQP-methods can be used also for a check of second-order sufficient conditions and for a postoptimal calculation of adjoint variables. In addition, SQP-methods lead to a robust computation of sensitivity differentials of optimal solutions with respect to perturbation parameters. Numerical sensitivity analysis is the basis for real-time control approximations of perturbed solutions which are obtained by evaluating a first-order Taylor expansion with respect to the parameter. The proposed numerical methods are illustrated by the optimal control of a low-thrust satellite transfer to geosynchronous orbit and a complex control problem from aquanautics. The examples illustrate the robustness, accuracy and efficiency of the proposed numerical algorithms.  相似文献   

17.
In this paper a linear programming-based optimization algorithm called the Sequential Cutting Plane algorithm is presented. The main features of the algorithm are described, convergence to a Karush–Kuhn–Tucker stationary point is proved and numerical experience on some well-known test sets is showed. The algorithm is based on an earlier version for convex inequality constrained problems, but here the algorithm is extended to general continuously differentiable nonlinear programming problems containing both nonlinear inequality and equality constraints. A comparison with some existing solvers shows that the algorithm is competitive with these solvers. Thus, this new method based on solving linear programming subproblems is a good alternative method for solving nonlinear programming problems efficiently. The algorithm has been used as a subsolver in a mixed integer nonlinear programming algorithm where the linear problems provide lower bounds on the optimal solutions of the nonlinear programming subproblems in the branch and bound tree for convex, inequality constrained problems.  相似文献   

18.
This paper develops a technique for numerically solving hybrid optimal control problems. The theoretical foundation of the approach is a recently developed methodology by S.C. Bengea and R.A. DeCarlo [Optimal control of switching systems, Automatica. A Journal of IFAC 41 (1) (2005) 11–27] for solving switched optimal control problems through embedding. The methodology is extended to incorporate hybrid behavior stemming from autonomous (uncontrolled) switches that results in plant equations with piecewise smooth vector fields. We demonstrate that when the system has no memory, the embedding technique can be used to reduce the hybrid optimal control problem for such systems to the traditional one. In particular, we show that the solution methodology does not require mixed integer programming (MIP) methods, but rather can utilize traditional nonlinear programming techniques such as sequential quadratic programming (SQP). By dramatically reducing the computational complexity over existing approaches, the proposed techniques make optimal control highly appealing for hybrid systems. This appeal is concretely demonstrated in an exhaustive application to a unicycle model that contains both autonomous and controlled switches; optimal and model predictive control solutions are given for two types of models using both a minimum energy and minimum time performance index. Controller performance is evaluated in the presence of a step frictional disturbance and parameter uncertainties which demonstrates the robustness of the controllers.  相似文献   

19.
We consider optimal control problems for distributed-parameter systems described by semilinear equations, with constraints on the control and on the state, and an exact pointwise target condition. As an application of a general theory of nonlinear programming problems in Banach spaces, a version of the Pontryagin maximum principle is obtained.This research was partly supported by the National Science Foundation under Grant DMS-92-21819.  相似文献   

20.
We show that recently developed interior point methods for quadratic programming and linear complementarity problems can be put to use in solving discrete-time optimal control problems, with general pointwise constraints on states and controls. We describe interior point algorithms for a discrete-time linear-quadratic regulator problem with mixed state/control constraints and show how they can be efficiently-incorporated into an inexact sequential quadratic programming algorithm for nonlinear problems. The key to the efficiency of the interior-point method is the narrow-banded structure of the coefficient matrix which is factorized at each iteration.This research was supported by the Applied Mathematical Sciences Subprogram of the Office of Energy Research, US Department of Energy, under Contract W-31-109-Eng-38.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号