首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Temporal problems solved by dynamic fuzzy network based on genetic algorithm with variable-length chromosomes
Institution:1. Department of Computational Intelligence, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, Wroclaw 50-370, Poland;2. Department of Computer Science, University of South Alabama, 150 Jaguar Drive, Mobile, AL 36688, USA;3. Department of Systems and Computer Networks, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, Wroclaw 50-370, Poland
Abstract:In this paper, a dynamic fuzzy network and its design based on genetic algorithm with variable-length chromosomes is proposed. First, the dynamic fuzzy network constituted from a series of dynamic fuzzy if–then rules is proposed. One characteristic of this network is its ability to deal with temporal problems. Then, the proposed genetic algorithm with variable-length chromosomes is adopted into the design process as a means of allowing the application of the network in situations where the actual desired output is unavailable. In the proposed genetic algorithm, the length of each chromosome varies with the number of rules coded in it. Using this algorithm, no pre-assignment of the number of rules in the dynamic fuzzy network is required, since it can always help to find the most suitable number of rules. All free parameters in the network, including the spatial input partition, consequent parameters and feedback connection weights, are tuned concurrently. To further promote the design performance, genetic algorithm with variable-length chromosomes and relative-based mutated reproduction operation is proposed. In this algorithm, the elite individuals are directly reproduced to the next generation only when their averaged similarity value is smaller than a similarity threshold; otherwise, the elites are mutated to the next generation. To show the efficiency of this dynamic fuzzy network designed by genetic algorithm with variable-length chromosomes and relative-based mutated reproduction operation, two temporal problems are simulated. The simulated results and comparisons with recurrent neural and fuzzy networks verify the efficacy and efficiency of the proposed approach.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号