Phosphorus flame retardant polybenzoxazine foams based on renewable diphenolic acid |
| |
Authors: | Camilo Zú ñ iga,Maria Soledad LarrechiGerard Lligadas,Juan Carlos RondaMarina Galià ,Virginia Cá diz |
| |
Affiliation: | Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, Campus Sescelades, Marcel.lí Domingo s/n, 43007 Tarragona, Spain |
| |
Abstract: | Flame retardant polybenzoxazine foams were prepared in a two step process, by heating mixtures of the benzoxazine derived from renewable diphenolic acid (DPA-Bz) with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) or 9,10-dihydro-9-oxa-10-(1-hydroxy-1-methylethyl) phosphaphenanthrene-10-oxide (DOPO-2Me) as additives. In the first step partial curing was achieved at different times and temperatures. In the second step, these materials underwent self foaming when heated at 220 °C. By means of a factorial design 23 the effect of curing conditions and type of additive on the foam density were evaluated. DOPO-2Me additive was found to partially react with the DPA-Bz leading to a decrease in the glass transition temperature of the materials. The cellular structure of the foams was characterized by scanning electron microscope in terms of cell size, cell size distribution, closed-cell content and anisotropy ratio. The presence of DOPO-2Me into the solid precursors and foams greatly influenced the thermal degradation and the flame retardancy properties as evaluated by TGA, LOI and UL-94 respectively. |
| |
Keywords: | Self-foaming Phosphorus-compound Polybenzoxazine Foam Flame retardancy Renewable resources |
本文献已被 ScienceDirect 等数据库收录! |
|